A Learnable Model With Calibrated Uncertainty Quantification for Estimating Canopy Height From Spaceborne Sequential Imagery

被引:9
|
作者
Alagialoglou, Leonidas [1 ]
Manakos, Ioannis [2 ]
Heurich, Marco [3 ,4 ,5 ]
Cervenka, Jaroslav [6 ]
Delopoulos, Anastasios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Multimedia Understanding Grp, Thessaloniki 54124, Greece
[2] Ctr Res & Technol Hellas CERTH, Informat Technol Inst, Thessaloniki 57001, Greece
[3] Bavarian Forest Natl Pk, Dept Visitor Management & Natl Pk Monitoring, D-94481 Grafenau, Germany
[4] Univ Freiburg, Chair Wildlife Ecol & Management, Fac Environm & Nat Resources, D-79106 Freiburg, Germany
[5] Inland Norway Univ Appl Sci, Inst Forest & Wildlife Management, Campus Evenstad, N-2480 Koppang, Norway
[6] Sumava Natl Pk, Kasperske Hory 34192, Czech Republic
关键词
Calibration; canopy height estimation; multitemporal regression; recurrent neural network (RNN); Sentinel-2; uncertainty estimation; FOREST; LIDAR;
D O I
10.1109/TGRS.2022.3171407
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global-scale canopy height mapping is an important tool for ecosystem monitoring and sustainable forest management. Various studies have demonstrated the ability to estimate canopy height from a single spaceborne multispectral image using end-to-end learning techniques. In addition to texture information of a single-shot image, our study exploits multitemporal information of image sequences to improve estimation accuracy. We adopt a convolutional variant of a long shortterm memory (LSTM) model for canopy height estimation from multitemporal instances of Sentinel-2 products. Furthermore, we utilize the deep ensembles technique for meaningful uncertainty estimation on the predictions and postprocessing isotonic regression model for calibrating them. Our lightweight model (similar to 320k trainable parameters) achieves the mean absolute error (MAE) of 1.29 m in a European test area of 79 km(2). It outperforms the state-of-the-art methods based on single-shot spaceborne images as well as costly airborne images while providing additional confidence maps that are shown to he well calibrated. Moreover, the trained model is shown to be transferable in a different country of Europe using a fine-tuning area of as low as similar to 2 km(2) with MAE = 1.94 m.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery
    Csillik, Ovidiu
    Kumar, Pramukta
    Asner, Gregory P.
    REMOTE SENSING, 2020, 12 (07)
  • [2] Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables
    Tuominen, Sakari
    Balazs, Andras
    Honkavaara, Eija
    Polonen, Ilkka
    Saari, Heikki
    Hakala, Teemu
    Viljanen, Niko
    SILVA FENNICA, 2017, 51 (05)
  • [3] Hybrid model for estimating forest canopy heights using fused multimodal spaceborne LiDAR data and optical imagery
    Wang, Shufan
    Liu, Chun
    Li, Weiyue
    Jia, Shoujun
    Yue, Han
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [4] Implementation of spaceborne lidar-retrieved canopy height in the WRF model
    Lee, Junhong
    Hong, Jinkyu
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (12) : 6863 - 6876
  • [5] Canopy height model and NAIP imagery pairs across CONUS
    Allred, Brady W.
    Mccord, Sarah E.
    Morford, Scott L.
    SCIENTIFIC DATA, 2025, 12 (01)
  • [6] Exploring the Relationship between Forest Canopy Height and Canopy Density from Spaceborne LiDAR Observations
    Kay, Heather
    Santoro, Maurizio
    Cartus, Oliver
    Bunting, Pete
    Lucas, Richard
    REMOTE SENSING, 2021, 13 (24)
  • [7] Analyzing the Uncertainty of Estimating Forest Aboveground Biomass Using Optical Imagery and Spaceborne LiDAR
    Sun, Xiaofang
    Li, Guicai
    Wang, Meng
    Fan, Zemeng
    REMOTE SENSING, 2019, 11 (06)
  • [8] Estimation of the Canopy Height Model From Multispectral Satellite Imagery With Convolutional Neural Networks
    Illarionova, Svetlana
    Shadrin, Dmitrii
    Ignatiev, Vladimir
    Shayakhmetov, Sergey
    Trekin, Alexey
    Oseledets, Ivan
    IEEE ACCESS, 2022, 10 : 34116 - 34132
  • [9] Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models
    Gupta, Rajit
    Sharma, Laxmi Kant
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 27
  • [10] An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA
    Chen, Gang
    Hay, Geoffrey J.
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (06) : 1532 - 1542