An alternative point of view to the theory of fractional Fourier transform

被引:12
|
作者
Dattoli, G [1 ]
Torre, A [1 ]
Mazzacurati, G [1 ]
机构
[1] ENEA, Dipartimento Innovaz, Settore Fis Applicata, Ctr Ric Frascati, I-00044 Frascati, Italy
关键词
D O I
10.1093/imamat/60.3.215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of the fractional Fourier transform is framed within the context of quantum evolution operators. This point of view yields an extension of the above concept and greatly simplifies the underlying operational algebra. It is also proved that a multidimensional extension can be performed by using a biorthogonal multiindex harmonic oscillator basis. It is finally shown that most of the proposed physical interpretations of the fractional Fourier transform are just trivial consequences of the analysis developed in this paper.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [1] Alternative point of view to the theory of fractional Fourier transform
    Dattoli, G.
    Torre, A.
    Mazzacurati, G.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1998, 60 (03): : 215 - 224
  • [2] The scale of the Fourier transform: a point of view of the fractional Fourier transform
    Jimenez, C. J.
    Vilardy, J. M.
    Salinas, S.
    Mattos, L.
    Torres, C.
    VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792
  • [3] Biospeckle: fractional Fourier transform point of view
    Lasso, William
    Perez Calderon, Eduardo A.
    Castillo Serrano, Nelali P.
    Diaz M, Leonardo
    Torres, Cesar O.
    8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS, 2013, 8785
  • [4] The van Cittert-Zernike theorem: a fractional order Fourier transform point of view
    Torres, CO
    Torres, Y
    OPTICS COMMUNICATIONS, 2004, 232 (1-6) : 11 - 14
  • [5] Graph Fractional Fourier Transform: A Unified Theory
    Alikasifoglu, Tuna
    Kartal, Bunyamin
    Koc, Aykut
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3834 - 3850
  • [6] Quantum Theory of Optical Fractional Fourier Transform
    Zhang Ke
    Li Lan-lan
    Yu Hai-jun
    Du Jian-ming
    Fan Hong-yi
    ACTA PHOTONICA SINICA, 2020, 49 (10)
  • [7] Quantum Theory of Optical Fractional Fourier Transform
    Zhang K.
    Li L.-L.
    Yu H.-J.
    Du J.-M.
    Fan H.-Y.
    Guangzi Xuebao/Acta Photonica Sinica, 2020, 49 (10):
  • [8] The fractional Fourier transform: theory, implementation and error analysis
    Narayanan, VA
    Prabhu, KMM
    MICROPROCESSORS AND MICROSYSTEMS, 2003, 27 (10) : 511 - 521
  • [9] Novel view for FRactional Fourier transform and the applications on optical image encryption
    Tang, Lin-Lin
    Pan, Jeng-Shyang
    ICIC Express Letters, 2013, 7 (02): : 553 - 558
  • [10] Theory and Applications of Fractional Fourier Transform and its Variants Preface
    Zhang, Yudong
    Yang, Xiao-Jun
    Cattani, Carlo
    Dong, Zhengchao
    Yuan, Ti-Fei
    Han, Liang-Xiu
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : IX - xvi