The transversal submanifolds and Gauss-Bonnet-Chern theorem

被引:7
|
作者
Yang, GH [1 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
关键词
D O I
10.1142/S0217732398002242
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
From general phi-mapping method and transverse theory, the Gauss-Bonnet-Chern theorem is discussed in detail. Through the calculation of the generalized Winding number, i.e. the degree of Gauss map, the Euler-Poincare characteristic is decomposed in terms of two transversal submanifolds. This decomposition is a further detailed study of Gauss-Bonnet-Chern theorem and Poincare-Hopf index theorem.
引用
收藏
页码:2123 / 2130
页数:8
相关论文
共 50 条
  • [21] Gauss-Bonnet-Chern approach to the averaged Universe
    Brunswic, Leo
    Buchert, Thomas
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (21)
  • [22] The Gauss-Bonnet-Chern mass for graphic manifolds
    Li, Haizhong
    Wei, Yong
    Xiong, Changwei
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (04) : 251 - 266
  • [23] The Gauss-Bonnet-Chern formula for Finslerian orbifolds
    Li, Jifu
    Deng, Shaoqiang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2): : 45 - 62
  • [24] Chern's magic form and the Gauss-Bonnet-Chern mass
    Wang, Guofang
    Wu, Jie
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (3-4) : 843 - 854
  • [25] Topological structure of Gauss-Bonnet-Chern theorem and (p)over-tilde-branes
    Tian Miao
    Zhang Xin-Hui
    Duan Yi-Shi
    CHINESE PHYSICS B, 2009, 18 (04) : 1301 - 1305
  • [26] The Gauss-Bonnet-Chern Mass of Conformally Flat Manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (17) : 4855 - 4878
  • [27] 超对称和Gauss-Bonnet-Chern定理
    虞跃
    高能物理与核物理, 1988, (01) : 28 - 33
  • [28] The Gauss-Bonnet-Chern mass under geometric flows
    Ho, Pak Tung
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [29] Multi-instantons, three-dimensional gauge theory, and the Gauss-Bonnet-Chern theorem
    Dorey, N
    Khoze, VV
    Mattis, MP
    NUCLEAR PHYSICS B, 1997, 502 (1-2) : 94 - 106
  • [30] THE GAUSS-BONNET-CHERN MASS OF HIGHER-CODIMENSION GRAPHS
    de Sousa, Alexandre
    Girao, Frederico
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 201 - 216