The transversal submanifolds and Gauss-Bonnet-Chern theorem

被引:7
|
作者
Yang, GH [1 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
关键词
D O I
10.1142/S0217732398002242
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
From general phi-mapping method and transverse theory, the Gauss-Bonnet-Chern theorem is discussed in detail. Through the calculation of the generalized Winding number, i.e. the degree of Gauss map, the Euler-Poincare characteristic is decomposed in terms of two transversal submanifolds. This decomposition is a further detailed study of Gauss-Bonnet-Chern theorem and Poincare-Hopf index theorem.
引用
收藏
页码:2123 / 2130
页数:8
相关论文
共 50 条
  • [31] Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
    Yuxin Ge
    Guofang Wang
    Jie Wu
    Chao Xia
    Frontiers of Mathematics in China, 2016, 11 : 1207 - 1237
  • [32] Superconnections and an intrinsic Gauss-Bonnet-Chern formula for Finsler manifolds
    Feng, Huitao
    Li, Ming
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) : 1903 - 1932
  • [33] On the Gauss-Bonnet-Chern formula for real Finsler vector bundles
    Zhao, Wei
    Yuan, Lixia
    Shen, Yibing
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 47 : 43 - 56
  • [34] Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    Xia, Chao
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) : 1207 - 1237
  • [35] Superconnections and an intrinsic Gauss-Bonnet-Chern formula for Finsler manifolds
    Huitao Feng
    Ming Li
    Science China(Mathematics), 2023, 66 (09) : 1903 - 1932
  • [36] Superconnections and an intrinsic Gauss-Bonnet-Chern formula for Finsler manifolds
    Huitao Feng
    Ming Li
    Science China Mathematics, 2023, 66 : 1903 - 1932
  • [37] Gauss-Bonnet-Chern曲率的变分公式(英文)
    郭希
    吴岚
    数学进展, 2018, 47 (02) : 231 - 242
  • [38] On a conformal Gauss-Bonnet-Chern inequality for LCF manifolds and related topics
    Hao Fang
    Calculus of Variations and Partial Differential Equations, 2005, 23 : 469 - 496
  • [39] The bifurcation theory of the Gauss-Bonnet-Chern topological current and Morse function
    Duan, YS
    Li, S
    Yang, GH
    NUCLEAR PHYSICS B, 1998, 514 (03) : 705 - 720
  • [40] Gauss–Bonnet–Chern theorem on moduli space
    Zhiqin Lu
    Michael R. Douglas
    Mathematische Annalen, 2013, 357 : 469 - 511