Linear point sets and Redei type k-blocking sets in PG(n, q)

被引:18
|
作者
Storme, L
Sziklai, P
机构
[1] State Univ Ghent, Dept Pure Maths & Comp Algebra, B-9000 Ghent, Belgium
[2] Tech Univ Budapest, H-1117 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Redei type k-blocking sets; directions of functions; linear point sets;
D O I
10.1023/A:1012724219499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, k-blocking sets in PG(n, q), being of Redei type, are investigated. A standard method to construct Redei type k'-blocking sets in PG(n, q) is to construct a cone having as base a Redei type k'-blocking set in a subspace of PG(n, q). But also other Redei type k-blocking sets in PG(n, q), which are not cones, exist. We give in this article a condition on the parameters of a Redei type k-blocking set of PG(n, q = p(h)), p a prime power, which guarantees that the Redei type k-blocking set is a cone. This condition is sharp. We also show that small Redei type k-blocking sets are linear.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条
  • [31] A computer search for minimal blocking sets in PG(2, q)
    Danielsson, Jennie
    ARS COMBINATORIA, 2010, 97 : 97 - 100
  • [32] Large blocking sets in PG(2, q2)
    Szonyi, Tamas
    Weiner, Zsuzsa
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 87
  • [33] Minimum size blocking sets of certain line sets related to a conic in PG(2, q)
    Patra, Kamal L.
    Sahoo, Binod K.
    Sahu, Bikramaditya
    DISCRETE MATHEMATICS, 2016, 339 (06) : 1716 - 1721
  • [34] Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points
    Harrach, Nora V.
    Metsch, Klaus
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 235 - 248
  • [35] Cameron-Liebler sets of k-spaces in PG(n,q)
    Blokhuis, A.
    De Boeck, M.
    D'haeseleer, J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1839 - 1856
  • [36] On blocking sets of external lines to a quadric in PG(3,q), q prime
    Biondi, Paola
    Lo Re, Pia Maria
    ARS COMBINATORIA, 2007, 85 : 43 - 48
  • [38] Blocking sets of external lines to a conic in PG(2,q), q ODD
    Aguglia, Angela
    Korchmaros, Gabor
    COMBINATORICA, 2006, 26 (04) : 379 - 394
  • [39] Blocking Sets Of External Lines To A Conic In PG(2,q), q ODD
    Angela Aguglia*
    Gábor Korchmáros*
    Combinatorica, 2006, 26 : 379 - 394
  • [40] Blocking sets of nonsecant lines to a conic in PG(2,q), q odd
    Aguglia, A
    Korchmáros, G
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (04) : 292 - 301