Blocking sets of nonsecant lines to a conic in PG(2,q), q odd

被引:10
|
作者
Aguglia, A
Korchmáros, G
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
blocking set; conic in PG(2.q); Baer subplane; 51E21;
D O I
10.1002/jcd.20042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [1], all point sets of minimum size in PG(2,q), blocking all external lines to a given irreducible conic C, have been determined for every odd q. Here we obtain a similar classification for those point sets of minimum size, which meet every external and tangent line to C. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:292 / 301
页数:10
相关论文
共 50 条
  • [1] Blocking Sets Of External Lines To A Conic In PG(2,q), q ODD
    Angela Aguglia*
    Gábor Korchmáros*
    Combinatorica, 2006, 26 : 379 - 394
  • [2] Blocking sets of external lines to a conic in PG(2,q), q ODD
    Aguglia, Angela
    Korchmaros, Gabor
    COMBINATORICA, 2006, 26 (04) : 379 - 394
  • [4] Minimum size blocking sets of certain line sets related to a conic in PG(2, q)
    Patra, Kamal L.
    Sahoo, Binod K.
    Sahu, Bikramaditya
    DISCRETE MATHEMATICS, 2016, 339 (06) : 1716 - 1721
  • [5] A characterization of the set of internal points of a conic in PG(2,q), q odd
    Stefano Innamorati
    Fulvio Zuanni
    Journal of Geometry, 2019, 110
  • [6] A characterization of the set of internal points of a conic in PG(2,q), q odd
    Innamorati, Stefano
    Zuanni, Fulvio
    JOURNAL OF GEOMETRY, 2019, 110 (02)
  • [7] On blocking sets of external lines to a quadric in PG(3,q), q prime
    Biondi, Paola
    Lo Re, Pia Maria
    ARS COMBINATORIA, 2007, 85 : 43 - 48
  • [8] On the smallest minimal blocking sets of Q(2n, q), for q an odd prime
    De Beule, J
    Storme, L
    DISCRETE MATHEMATICS, 2005, 294 (1-2) : 83 - 107
  • [9] A spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd
    Roessing, C.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 55 (2-3) : 107 - 119
  • [10] A spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd
    C. Rößing
    L. Storme
    Designs, Codes and Cryptography, 2010, 55 : 107 - 119