Blocking sets of nonsecant lines to a conic in PG(2,q), q odd

被引:10
|
作者
Aguglia, A
Korchmáros, G
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
blocking set; conic in PG(2.q); Baer subplane; 51E21;
D O I
10.1002/jcd.20042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [1], all point sets of minimum size in PG(2,q), blocking all external lines to a given irreducible conic C, have been determined for every odd q. Here we obtain a similar classification for those point sets of minimum size, which meet every external and tangent line to C. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:292 / 301
页数:10
相关论文
共 50 条
  • [21] Large blocking sets in PG(2, q2)
    Szonyi, Tamas
    Weiner, Zsuzsa
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 87
  • [22] NUCLEI OF SETS OF Q+1 POINTS IN PG(2,Q) AND BLOCKING SETS OF REDEI TYPE
    BRUEN, AA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 55 (01) : 130 - 132
  • [23] Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [24] Blocking sets of tangent and external lines to an elliptic quadric in PG(3,q)
    Bart De Bruyn
    Puspendu Pradhan
    Binod Kumar Sahoo
    Proceedings - Mathematical Sciences, 2021, 131
  • [25] Blocking sets of tangent and external lines to an elliptic quadric in PG(3,q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):
  • [26] Blocking sets of tangent and external lines to a hyperbolic quadric in PG(3, q)
    De Bruyn, Bart
    Sahoo, Binod Kumar
    Sahu, Bikramaditya
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2820 - 2826
  • [27] Double blocking sets of size 3q-1 in PG(2, q)
    Csajbok, Bence
    Heger, Tamas
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 78 : 73 - 89
  • [28] A computer search for minimal blocking sets in PG(2, q)
    Danielsson, Jennie
    ARS COMBINATORIA, 2010, 97 : 97 - 100
  • [29] Blocking subspaces by lines in PG(n, q)
    Metsch K.
    Combinatorica, 2004, 24 (3) : 459 - 486
  • [30] Blocking subspaces by lines in PG(n,q)
    Metsch, K
    COMBINATORICA, 2004, 24 (03) : 459 - 486