Linear point sets and Redei type k-blocking sets in PG(n, q)

被引:18
|
作者
Storme, L
Sziklai, P
机构
[1] State Univ Ghent, Dept Pure Maths & Comp Algebra, B-9000 Ghent, Belgium
[2] Tech Univ Budapest, H-1117 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Redei type k-blocking sets; directions of functions; linear point sets;
D O I
10.1023/A:1012724219499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, k-blocking sets in PG(n, q), being of Redei type, are investigated. A standard method to construct Redei type k'-blocking sets in PG(n, q) is to construct a cone having as base a Redei type k'-blocking set in a subspace of PG(n, q). But also other Redei type k-blocking sets in PG(n, q), which are not cones, exist. We give in this article a condition on the parameters of a Redei type k-blocking set of PG(n, q = p(h)), p a prime power, which guarantees that the Redei type k-blocking set is a cone. This condition is sharp. We also show that small Redei type k-blocking sets are linear.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条
  • [21] Sets of type (q-1, n) in PG(3, q)
    Innamorati, Stefano
    Zannetti, Mauro
    Zuanni, Fulvio
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 2255 - 2262
  • [22] Linear (q+1)-fold blocking sets in PG(2, q4)
    Ball, S
    Blokhuis, A
    Lavrauw, M
    FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (04) : 294 - 301
  • [23] Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [24] On large minimal blocking sets in PG(2,q)
    Szonyi, T
    Cossidente, A
    Gács, A
    Mengyán, C
    Siciliano, A
    Weiner, Z
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (01) : 25 - 41
  • [25] On the spectrum of minimal blocking sets in PG$(2,q)$
    Tamás Szőnyi
    András Gács
    Zsuzsa Weiner
    Journal of Geometry, 2003, 76 (1) : 256 - 281
  • [26] Blocking sets in PG(2, qn) from cones of PG(2n, q)
    Francesco Mazzocca
    Olga Polverino
    Journal of Algebraic Combinatorics, 2006, 24 : 61 - 81
  • [27] Blocking sets in PG(2, qn) from cones of PG(2n, q)
    Mazzocca, Francesco
    Polverino, Olga
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (01) : 61 - 81
  • [28] SETS OF TYPE (1,N,Q+1) IN PG(D,Q)
    HIRSCHFELD, JWP
    THAS, JA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1980, 41 (SEP) : 254 - 278
  • [29] Blocking sets of certain line sets related to a hyperbolic quadric in PG(3, q)
    Sahoo, Binod Kumar
    Sahu, Bikramaditya
    ADVANCES IN GEOMETRY, 2019, 19 (04) : 477 - 486
  • [30] On resolving sets in the point-line incidence graph of PG (n, q)
    Bartoli, Daniele
    Kiss, Gyorgy
    Marcugini, Stefano
    Pambianco, Fernanda
    ARS MATHEMATICA CONTEMPORANEA, 2020, 19 (02) : 231 - 247