An improved algorithm for combinatorial multi-parametric quadratic programming

被引:39
|
作者
Feller, Christian [1 ,2 ]
Johansen, Tor Arne [2 ]
Olaru, Sorin [3 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] NTNU, Dept Engn Cybernet, N-7491 Trondheim, Norway
[3] SUPELEC Syst Sci E3S Automat Control Dept, F-91192 Gif Sur Yvette, France
关键词
Multi-parametric programming; Explicit constrained linear quadratic regulators; Predictive control; SYSTEMS;
D O I
10.1016/j.automatica.2013.02.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of multi-parametric quadratic programming (mpQP) is to compute analytic solutions to parameter-dependent constrained optimization problems, e.g., in the context of explicit linear MPC. We propose an improved combinatorial mpQP algorithm that is based on implicit enumeration of all possible optimal active sets and a simple saturation matrix pruning criterion which uses geometric properties of the constraint polyhedron for excluding infeasible candidate active sets. In addition, techniques are presented that allow to reduce the complexity of the discussed algorithm in the presence of symmetric problem constraints. Performance improvements are discussed for two example problems from the area of explicit linear MPC. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1370 / 1376
页数:7
相关论文
共 50 条
  • [41] Multi-parametric programming based algorithms for the global solution of bi-level mixed-integer linear and quadratic programming problems
    Pistikopoulos, Efstratios N.
    Avraamidou, Stylani
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT C, 2017, 40C : 2125 - 2130
  • [42] Tuning as convex optimisation: a polynomial tuner for multi-parametric combinatorial samplers
    Bendkowski, Maciej
    Bodini, Olivier
    Dovgal, Sergey
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (05): : 765 - 811
  • [43] ON SOLVING A CERTAIN MULTI-PARAMETRIC NONLINEAR PROGRAMMING PROBLEM.
    Mine, Hisashi
    Fukushima, Masao
    Ryang, Yong Joon
    Memoirs of the Faculty of Engineering, Kyoto University, 1980, 42 (Pt 4): : 404 - 412
  • [44] Multi-parametric sensitivity analysis in piecewise linear fractional programming
    Kheirfam, Behrouz
    Mirnia, Kamal
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2008, 4 (02) : 343 - 351
  • [45] Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming
    Kouramasa, K. I.
    Faisca, N. P.
    Panos, C.
    Pistikopoulos, E. N.
    AUTOMATICA, 2011, 47 (08) : 1638 - 1645
  • [46] On multi-parametric programming and its applications in process systems engineering
    Oberdieck, Richard
    Diangelakis, Nikolaos A.
    Nascu, Ioana
    Papathanasiou, Maria M.
    Sun, Muxin
    Auraamidou, Styliani
    Pistikopoulos, Efstratios N.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 116 : 61 - 82
  • [47] Scheduling of an integrated forest biorefinery using multi-parametric programming
    Pulkkinen, Petteri
    Ritala, Risto
    ICHEAP-9: 9TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-3, 2009, 17 : 1299 - 1304
  • [48] Process Synthesis under Uncertainty via Multi-parametric Programming
    Dominguez, Luis F.
    Pistikopoulos, Efstratios N.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 1123 - 1128
  • [49] A MULTI-PARAMETRIC SEIZURE SCREENING ALGORITHM FOR CLINICAL EEG
    Watson, Ashley C.
    Sherman, D. L.
    Kaplan, P. W.
    Mirski, M. A.
    Ziai, W. C.
    Natarajan, Ananth
    Rothman, N. S.
    Natarajan, M.
    EPILEPSIA, 2008, 49 : 383 - 384
  • [50] Improved Unit Commitment with Accurate Dynamic Scenarios Clustering Based on Multi-Parametric Programming and Benders Decomposition
    Zhi Z.
    Huang H.
    Xiong W.
    Zhou Y.
    Yan M.
    Xia S.
    Jiang B.
    Su R.
    Tian X.
    Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (06): : 1557 - 1576