An improved algorithm for combinatorial multi-parametric quadratic programming

被引:39
|
作者
Feller, Christian [1 ,2 ]
Johansen, Tor Arne [2 ]
Olaru, Sorin [3 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] NTNU, Dept Engn Cybernet, N-7491 Trondheim, Norway
[3] SUPELEC Syst Sci E3S Automat Control Dept, F-91192 Gif Sur Yvette, France
关键词
Multi-parametric programming; Explicit constrained linear quadratic regulators; Predictive control; SYSTEMS;
D O I
10.1016/j.automatica.2013.02.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of multi-parametric quadratic programming (mpQP) is to compute analytic solutions to parameter-dependent constrained optimization problems, e.g., in the context of explicit linear MPC. We propose an improved combinatorial mpQP algorithm that is based on implicit enumeration of all possible optimal active sets and a simple saturation matrix pruning criterion which uses geometric properties of the constraint polyhedron for excluding infeasible candidate active sets. In addition, techniques are presented that allow to reduce the complexity of the discussed algorithm in the presence of symmetric problem constraints. Performance improvements are discussed for two example problems from the area of explicit linear MPC. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1370 / 1376
页数:7
相关论文
共 50 条
  • [31] Uncertainty Relationship Analysis for Multi-Parametric Programming in Optimization
    Cai, Tianxing
    Xu, Qiang
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 437 - 447
  • [32] LOCAL SEARCH IN MULTI-PARAMETRIC AND MULTIPLE OBJECTIVE PROGRAMMING
    HARTLEY, R
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1985, 36 (12) : 1166 - 1166
  • [33] Adjustable robust optimization through multi-parametric programming
    Styliani Avraamidou
    Efstratios N. Pistikopoulos
    Optimization Letters, 2020, 14 : 873 - 887
  • [34] Adjustable robust optimization through multi-parametric programming
    Avraamidou, Styliani
    Pistikopoulos, Efstratios N.
    OPTIMIZATION LETTERS, 2020, 14 (04) : 873 - 887
  • [35] Theoretical and algorithmic advances in multi-parametric programming and control
    Efstratios N. Pistikopoulos
    Luis Dominguez
    Christos Panos
    Konstantinos Kouramas
    Altannar Chinchuluun
    Computational Management Science, 2012, 9 (2) : 183 - 203
  • [36] Efficient computation of controller partitions in multi-parametric programming
    Suard, R
    Löfberg, J
    Grieder, P
    Kvasnica, M
    Morari, M
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3643 - 3648
  • [37] Multi-Parametric Linear Programming Under Global Uncertainty
    Charitopoulos, Vassilis M.
    Papageorgiou, Lazaros G.
    Dua, Vivek
    AICHE JOURNAL, 2017, 63 (09) : 3871 - 3895
  • [38] SENSITIVITY ANALYSIS IN MULTI-PARAMETRIC STRICTLY CONVEX QUADRATIC OPTIMIZATION
    Kheirfam, B.
    MATEMATICKI VESNIK, 2010, 62 (02): : 95 - 107
  • [39] A class of multi-parametric quadratic program with an uncertain objective function
    Wei, Wei
    Wu, Danman
    Wang, Zhaojian
    Shafie-khah, Miadreza
    Catalao, Joao P. S.
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 138
  • [40] Coordinated Dispatch Optimization between the Main Grid and Virtual Power Plants Based on Multi-Parametric Quadratic Programming
    Yang, Guixing
    Xu, Mingze
    Wang, Weiqing
    Lei, Shunbo
    ENERGIES, 2023, 16 (15)