An improved algorithm for combinatorial multi-parametric quadratic programming

被引:39
|
作者
Feller, Christian [1 ,2 ]
Johansen, Tor Arne [2 ]
Olaru, Sorin [3 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] NTNU, Dept Engn Cybernet, N-7491 Trondheim, Norway
[3] SUPELEC Syst Sci E3S Automat Control Dept, F-91192 Gif Sur Yvette, France
关键词
Multi-parametric programming; Explicit constrained linear quadratic regulators; Predictive control; SYSTEMS;
D O I
10.1016/j.automatica.2013.02.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of multi-parametric quadratic programming (mpQP) is to compute analytic solutions to parameter-dependent constrained optimization problems, e.g., in the context of explicit linear MPC. We propose an improved combinatorial mpQP algorithm that is based on implicit enumeration of all possible optimal active sets and a simple saturation matrix pruning criterion which uses geometric properties of the constraint polyhedron for excluding infeasible candidate active sets. In addition, techniques are presented that allow to reduce the complexity of the discussed algorithm in the presence of symmetric problem constraints. Performance improvements are discussed for two example problems from the area of explicit linear MPC. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1370 / 1376
页数:7
相关论文
共 50 条
  • [11] On a Class of Multi-Parametric Quadratic Programming and Its Applications to Machine Learning
    Zhou, Yuxun
    Spanos, Costas J.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2826 - 2833
  • [13] Null broadening and sidelobe control method based on multi-parametric quadratic programming
    Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
    不详
    Dongbei Daxue Xuebao, 2012, 11 (1559-1562):
  • [14] Null Broadening and Side lobe Control Algorithm via Multi-Parametric Quadratic Programming for Robust Adaptive Beamforming
    Liu, Fulai
    Sun, Guozhu
    Wang, Jinkuan
    Du, Ruiyan
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (04): : 307 - 315
  • [15] Multi-objective optimization with convex quadratic cost functions: A multi-parametric programming approach
    Oberdieck, Richard
    Pistikopoulos, Efstratios N.
    COMPUTERS & CHEMICAL ENGINEERING, 2016, 85 : 36 - 39
  • [16] Parallel computing in multi-parametric programming
    Oberdieck, Richard
    Pistikopoulos, Efstratios N.
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2016, 38A : 169 - 174
  • [17] LINEAR MULTI-PARAMETRIC PROGRAMMING PROBLEM
    SOKOLOVA, L
    EKONOMICKO-MATEMATICKY OBZOR, 1968, 4 (01): : 44 - 68
  • [18] Robust MVDR beamformer for nulling level control via multi-parametric quadratic programming
    Liu F.L.
    Wang J.K.
    Sun C.Y.
    Du R.Y.
    Progress In Electromagnetics Research C, 2011, 20 : 239 - 254
  • [19] Robust dynamic programming via multi-parametric programming
    Faisca, Nuno P.
    Kouramas, Kostas I.
    Saraiva, Pedro M.
    Rustem, Berc
    Pistikopoulos, Efstratios N.
    17TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2007, 24 : 811 - 816
  • [20] Approximate Multi-Parametric Programming based B&B Algorithm for MINLPs
    Gueddar, Taoufiq
    Dua, Vivek
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 798 - 802