THE GENERALIZED FERMAT CONJECTURE

被引:0
|
作者
Garcia-Maynez, Adalberto [1 ]
Gary, Margarita [2 ]
Pimienta Acosta, Adolfo [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient Circuito Exterior, Ciudad Univ Coyoacan, Mexico City 04510, DF, Mexico
[2] Univ Costa, CUC, Dept Ciencias Nat & Exactas, Calle 58 55-66, Barranquilla, Colombia
[3] Univ Simon Bolivar, Fac Ciencias Basicas & Biomed, Calle 58 55-132, Barranquilla, Colombia
关键词
tangent; Fermat curve; Chebyshev polynomials;
D O I
10.1515/ms-2017-0225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a; b; c are non-zero integers, we considerer the following problem: for which values of n the line ax + by + cz = 0 may be tangent to the curve x(n) + y(n) = z(n) ? We give a partial solution: if n = 5 or if n 1 is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat' s Last Theorem. (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [21] GENERALIZED FERMAT AND MERSENNE NUMBERS
    LIGH, S
    JONES, P
    FIBONACCI QUARTERLY, 1982, 20 (01): : 12 - 16
  • [22] Automorphisms of generalized Fermat curves
    Hidalgo, Ruben A.
    Kontogeorgis, Aristides
    Leyton-Alvarez, Maximilian
    Paramantzoglou, Panagiotis
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (09) : 2312 - 2337
  • [23] Notes on Generalized Fermat Numbers
    Eleuch, H.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (03): : 491 - 493
  • [24] FACTORS OF GENERALIZED FERMAT NUMBERS
    DUBNER, H
    KELLER, W
    MATHEMATICS OF COMPUTATION, 1995, 64 (209) : 397 - 405
  • [25] Generalized nonvanishing conjecture and Iitaka conjecture
    Chi-Kang Chang
    Mathematische Zeitschrift, 2025, 310 (2)
  • [26] On Generalized Fermat Type Functional Equations
    Indrajit Lahiri
    Kit-Wing Yu
    Computational Methods and Function Theory, 2007, 7 (1) : 141 - 149
  • [27] Distribution of generalized fermat prime numbers
    Dubner, H
    Gallot, Y
    MATHEMATICS OF COMPUTATION, 2002, 71 (238) : 825 - 832
  • [28] FIELD OF MODULI OF GENERALIZED FERMAT CURVES
    Reyes-Carocca, Sebastian
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (02): : 467 - 475
  • [29] JACOBIAN VARIETY OF GENERALIZED FERMAT CURVES
    Carvacho, Mariela
    Hidalgo, Ruben A.
    Quispe, Saul
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (02): : 261 - 284
  • [30] Holomorphic differentials of generalized Fermat curves
    Hidalgo, Ruben A.
    JOURNAL OF NUMBER THEORY, 2020, 217 : 78 - 101