On Generalized Fermat Type Functional Equations

被引:0
|
作者
Indrajit Lahiri
Kit-Wing Yu
机构
[1] University of Kalyani,Department of Mathematics
关键词
Differential equations; generalized Fermat type functional equations; linearly independent; meromorphic functions; Nevanlinna theory; uniqueness theory of meromorphic functions; 30D05; 30D30; 30D35;
D O I
10.1007/BF03321637
中图分类号
学科分类号
摘要
Let p be a positive integer not less than 2. It is shown that a necessary condition for the generalized Fermat type functional equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{j=1}^pa_j(z){f_j}^{k_j}(z)\equiv 1$$\end{document} having non-constant meromorphic solutions f1, f2, …, fp is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{j=1}^{p} {1\over k_{j}} \geq {1\over (p-1)+A_{p}}$$\end{document}, where A2 = 1,2, Ap = (2p − 3)/3 if p = 3, 4, 5, Ap = (2p + 1 − 2√2p)/2 if p ≥ 6 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\left( {r,a_j } \right) = \mathcal{O}\left( {T\left( {r,f_j } \right)} \right)$$\end{document}, 1 ≤ j ≤ p, as r → + ∞, r ∉ E and E is a set of finite linear measure. This improves the result of Yu and Yang [14] in 2002. Next we discuss a question of Hayman [7] and give a partial answer to it.
引用
收藏
页码:141 / 149
页数:8
相关论文
共 50 条
  • [1] ON GENERALIZED FERMAT DIOPHANTINE FUNCTIONAL EQUATIONS IN Cn AND PICARD TYPE THEOREMS
    Chen, Wei
    Wang, Qiong
    Yang, Liu
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (03): : 531 - 549
  • [2] THE GENERALIZED FERMAT TYPE DIFFERENCE EQUATIONS
    Liu, Kai
    Ma, Lei
    Zhai, Xiaoyang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (06) : 1845 - 1858
  • [3] On Meromorphic Solutions of Functional Equations of Fermat Type
    Hu, Pei-Chu
    Wang, Qiong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2497 - 2515
  • [4] On Meromorphic Solutions of Functional Equations of Fermat Type
    Pei-Chu Hu
    Qiong Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2497 - 2515
  • [5] Existence of meromorphic solutions of some generalized Fermat functional equations
    Wu, Linlin
    He, Chun
    Lu, Weiran
    Lu, Feng
    AEQUATIONES MATHEMATICAE, 2020, 94 (01) : 59 - 69
  • [6] Existence of meromorphic solutions of some generalized Fermat functional equations
    Linlin Wu
    Chun He
    Weiran Lü
    Feng Lü
    Aequationes mathematicae, 2020, 94 : 59 - 69
  • [7] Generalized Fermat equations: A miscellany
    Bennett, Michael A.
    Chen, Imin
    Dahmen, Sander R.
    Yazdani, Soroosh
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) : 1 - 28
  • [8] ON A CLASS OF GENERALIZED FERMAT EQUATIONS
    Dabrowski, Andrzej
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (03) : 505 - 510
  • [9] On Meromorphic Solutions of Some Fermat-Type Functional Equations
    Lu, J. T.
    Xu, J. F.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2024, 59 (03): : 187 - 198
  • [10] Transcendental solutions of Fermat-type functional equations in Cn
    Ahamed, Molla Basir
    Allu, Vasudevarao
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (05)