THE GENERALIZED FERMAT CONJECTURE

被引:0
|
作者
Garcia-Maynez, Adalberto [1 ]
Gary, Margarita [2 ]
Pimienta Acosta, Adolfo [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient Circuito Exterior, Ciudad Univ Coyoacan, Mexico City 04510, DF, Mexico
[2] Univ Costa, CUC, Dept Ciencias Nat & Exactas, Calle 58 55-66, Barranquilla, Colombia
[3] Univ Simon Bolivar, Fac Ciencias Basicas & Biomed, Calle 58 55-132, Barranquilla, Colombia
关键词
tangent; Fermat curve; Chebyshev polynomials;
D O I
10.1515/ms-2017-0225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a; b; c are non-zero integers, we considerer the following problem: for which values of n the line ax + by + cz = 0 may be tangent to the curve x(n) + y(n) = z(n) ? We give a partial solution: if n = 5 or if n 1 is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat' s Last Theorem. (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条