FURSTENBERG SETS FOR A FRACTAL SET OF DIRECTIONS

被引:18
|
作者
Molter, Ursula [1 ,2 ]
Rela, Ezequiel [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, Argentina
[2] IMAS UBA CONICET, Buenos Aires, DF, Argentina
关键词
Furstenberg sets; Hausdorff dimension; dimension function; Kakeya sets;
D O I
10.1090/S0002-9939-2011-11111-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the behavior of the size of Furstenberg sets with respect to the size of the set of directions defining it. For any pair alpha, beta is an element of (0,1], we will say that a set E subset of R-2 is an F-alpha beta-set if there is a subset L of the unit circle of Hausdorff dimension at least beta and, for each direction e in L, there is a line segment l(e) in the direction of e such that the Hausdorff dimension of the set E boolean AND l(e) is equal to or greater than alpha. The problem is considered in the wider scenario of generalized Hausdorff measures, giving estimates on the appropriate dimension functions for each class of Furstenberg sets. As a corollary of our main results, we obtain that dim(E) >= max {alpha + beta/2; 2 alpha + beta - 1} for any E is an element of F-alpha beta. In particular we are able to extend previously known results to the "endpoint" alpha = 0 case.
引用
收藏
页码:2753 / 2765
页数:13
相关论文
共 50 条
  • [1] Small Furstenberg sets
    Molter, Ursula
    Rela, Ezequiel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 475 - 486
  • [2] Furstenberg sets and Furstenberg schemes over finite fields
    Ellenberg, Jordan S.
    Erman, Daniel
    ALGEBRA & NUMBER THEORY, 2016, 10 (07) : 1415 - 1436
  • [3] SOME TOY FURSTENBERG SETS AND PROJECTIONS OF THE FOUR-CORNER CANTOR SET
    Oberlin, Daniel M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (04) : 1209 - 1215
  • [4] On the packing dimension of Furstenberg sets
    Shmerkin, Pablo
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 146 (01): : 351 - 364
  • [5] Polynomials with dense zero sets and discrete models of the Kakeya conjecture and the Furstenberg set problem
    Ruixiang Zhang
    Selecta Mathematica, 2017, 23 : 275 - 292
  • [6] Polynomials with dense zero sets and discrete models of the Kakeya conjecture and the Furstenberg set problem
    Zhang, Ruixiang
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (01): : 275 - 292
  • [7] On the packing dimension of Furstenberg sets
    Pablo Shmerkin
    Journal d'Analyse Mathématique, 2022, 146 : 351 - 364
  • [8] On the Hausdorff Dimension of Circular Furstenberg Sets
    Fassler, Katrin
    Liu, Jiayin
    Orponen, Tuomas
    DISCRETE ANALYSIS, 2024,
  • [9] The Furstenberg set and its random version
    Fan, Aihua
    Queffelec, Herve
    Queffelec, Martine
    ENSEIGNEMENT MATHEMATIQUE, 2024, 70 (1-2): : 61 - 120
  • [10] Integrability of orthogonal projections, and applications to Furstenberg sets
    Dabrowski, Damian
    Orponen, Tuomas
    Villa, Michele
    ADVANCES IN MATHEMATICS, 2022, 407