On the packing dimension of Furstenberg sets

被引:4
|
作者
Shmerkin, Pablo [1 ,2 ]
机构
[1] Torcuato Di Tella Univ, Dept Math & Stat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 146卷 / 01期
关键词
HAUSDORFF DIMENSION; PROJECTIONS; FAMILIES;
D O I
10.1007/s11854-022-0203-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if alpha is an element of (0, 1/2], then the packing dimension of a set E subset of Double-struck capital R-2 for which there exists a set of lines of dimension 1 intersecting E in Hausdorff dimension >= alpha is at least 1/2 + alpha + c(alpha)for some c(alpha) > 0. In particular, this holds for alpha-Furstenberg sets, that is, sets having intersection of Hausdorff dimension >= >= with at least one line in every direction. Together with an earlier result of T. Orponen, this provides an improvement for the packing dimension of alpha-Furstenberg sets over the "trivial" estimate for all values of alpha is an element of (0, 1). The proof extends to more general families of lines, and shows that the scales at which an alpha-Furstenberg set resembles a set of dimension close to 1/2 + alpha, if they exist, are rather sparse.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 50 条
  • [1] On the packing dimension of Furstenberg sets
    Pablo Shmerkin
    Journal d'Analyse Mathématique, 2022, 146 : 351 - 364
  • [2] An improved bound on the packing dimension of Furstenberg sets in the plane
    Orponen, Tuomas
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (03) : 797 - 831
  • [3] On the Hausdorff Dimension of Circular Furstenberg Sets
    Fassler, Katrin
    Liu, Jiayin
    Orponen, Tuomas
    DISCRETE ANALYSIS, 2024,
  • [4] An improved bound for the dimension of (α, 2α)-Furstenberg sets
    Hera, Kornelia
    Shmerkin, Pablo
    Yavicoli, Alexia
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (01) : 295 - 322
  • [5] ON THE HAUSDORFF DIMENSION OF FURSTENBERG SETS AND ORTHOGONAL PROJECTIONS IN THE PLANE
    Orponen, Tuomas
    Shmerkin, Pablo
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (18) : 3559 - 3632
  • [6] Dimension estimates on circular (s, t)-Furstenberg sets
    Liu, Jiayin
    ANNALES FENNICI MATHEMATICI, 2023, 48 (01): : 299 - 324
  • [7] Improving dimension estimates for Furstenberg-type sets
    Molter, Ursula
    Rela, Ezequiel
    ADVANCES IN MATHEMATICS, 2010, 223 (02) : 672 - 688
  • [9] Packing dimension of generalized Moran sets
    Hua, S
    Li, WX
    PROGRESS IN NATURAL SCIENCE, 1996, 6 (02) : 148 - 152
  • [10] Packing dimension of generalized Moran sets
    华苏
    李文侠
    ProgressinNaturalScience, 1996, (02) : 22 - 26