On the packing dimension of Furstenberg sets

被引:4
|
作者
Shmerkin, Pablo [1 ,2 ]
机构
[1] Torcuato Di Tella Univ, Dept Math & Stat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 146卷 / 01期
关键词
HAUSDORFF DIMENSION; PROJECTIONS; FAMILIES;
D O I
10.1007/s11854-022-0203-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if alpha is an element of (0, 1/2], then the packing dimension of a set E subset of Double-struck capital R-2 for which there exists a set of lines of dimension 1 intersecting E in Hausdorff dimension >= alpha is at least 1/2 + alpha + c(alpha)for some c(alpha) > 0. In particular, this holds for alpha-Furstenberg sets, that is, sets having intersection of Hausdorff dimension >= >= with at least one line in every direction. Together with an earlier result of T. Orponen, this provides an improvement for the packing dimension of alpha-Furstenberg sets over the "trivial" estimate for all values of alpha is an element of (0, 1). The proof extends to more general families of lines, and shows that the scales at which an alpha-Furstenberg set resembles a set of dimension close to 1/2 + alpha, if they exist, are rather sparse.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 50 条
  • [31] Packing sets
    不详
    INTERNATIONAL GAS ENGINEERING AND MANAGEMENT, 2002, 42 (06): : 30 - 30
  • [32] WEAK SEPARATION CONDITION, ASSOUAD DIMENSION, AND FURSTENBERG HOMOGENEITY
    Kaenmaki, Antti
    Rossi, Eino
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 465 - 490
  • [33] Simple Proofs for Furstenberg Sets Over Finite Fields
    Dhar, Manik
    Dvir, Zeev
    Lund, Ben
    DISCRETE ANALYSIS, 2021,
  • [34] Packing sets of patterns
    Burstein, Alexander
    Hasto, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 241 - 253
  • [35] Furstenberg maps for CAT(0) targets of finite telescopic dimension
    Bader, Uri
    Duchesne, Bruno
    Lecureux, Jean
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1723 - 1742
  • [36] DIMENSIONS OF FURSTENBERG SETS AND AN EXTENSION OF BOURGAIN'S PROJECTION THEOREM
    Shmerkin, Pablo
    Wang, Hong
    ANALYSIS & PDE, 2025, 18 (01)
  • [37] The sphere packing problem in dimension 8The sphere packing problem in dimension 8
    Viazovska, Maryna S.
    ANNALS OF MATHEMATICS, 2017, 185 (03) : 991 - 1015
  • [38] Symplectic packing in dimension 4
    Biran, P
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (03) : 420 - 437
  • [39] Multifractal phenomena and packing dimension
    Bayart, Frederic
    Heurteaux, Yanick
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (03) : 767 - 804
  • [40] Billingsley's packing dimension
    Das, Manav
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) : 273 - 278