On the packing dimension of Furstenberg sets

被引:4
|
作者
Shmerkin, Pablo [1 ,2 ]
机构
[1] Torcuato Di Tella Univ, Dept Math & Stat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 146卷 / 01期
关键词
HAUSDORFF DIMENSION; PROJECTIONS; FAMILIES;
D O I
10.1007/s11854-022-0203-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if alpha is an element of (0, 1/2], then the packing dimension of a set E subset of Double-struck capital R-2 for which there exists a set of lines of dimension 1 intersecting E in Hausdorff dimension >= alpha is at least 1/2 + alpha + c(alpha)for some c(alpha) > 0. In particular, this holds for alpha-Furstenberg sets, that is, sets having intersection of Hausdorff dimension >= >= with at least one line in every direction. Together with an earlier result of T. Orponen, this provides an improvement for the packing dimension of alpha-Furstenberg sets over the "trivial" estimate for all values of alpha is an element of (0, 1). The proof extends to more general families of lines, and shows that the scales at which an alpha-Furstenberg set resembles a set of dimension close to 1/2 + alpha, if they exist, are rather sparse.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 50 条
  • [41] Symplectic Packing in Dimension 4
    P. Biran
    Geometric & Functional Analysis GAFA, 1997, 7 : 420 - 437
  • [42] Packing dimension and Cartesian products
    Bishop, CJ
    Peres, Y
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) : 4433 - 4445
  • [43] Effective Packing Dimension and Traceability
    Downey, Rod
    Ng, Keng Meng
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2010, 51 (02) : 279 - 290
  • [44] Furstenberg Sets in Finite Fields: Explaining and Improving the Ellenberg–Erman Proof
    Manik Dhar
    Zeev Dvir
    Ben Lund
    Discrete & Computational Geometry, 2024, 71 : 327 - 357
  • [45] Fair Packing of Independent Sets
    Chiarelli, Nina
    Krnc, Matjaz
    Milanic, Martin
    Pferschy, Ulrich
    Pivac, Nevena
    Schauer, Joachim
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 154 - 165
  • [46] EXTREMAL PACKING AND COVERING SETS
    HANS, RJ
    MONATSHEFTE FUR MATHEMATIK, 1967, 71 (03): : 203 - &
  • [47] A PACKING PROBLEM FOR MEASURABLE SETS
    SANKOFF, D
    DAWSON, DA
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04): : 749 - &
  • [48] BLOCKING SETS AND THE PACKING PROBLEM
    GRONCHI, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7A (02): : 227 - 236
  • [49] ON CANTOR SETS AND PACKING MEASURES
    Wei, Chun
    Wen, Sheng-You
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) : 1737 - 1751
  • [50] Packing dimensions of sections of sets
    Falconer, KJ
    Järvenpää, M
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 125 : 89 - 104