The Furstenberg set and its random version

被引:1
|
作者
Fan, Aihua [1 ,2 ]
Queffelec, Herve [3 ,4 ]
Queffelec, Martine [3 ,4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Univ Picardie, LAMFA, UMR 7352, CNRS, 33 rue St Leu, F-80039 Amiens, France
[3] Univ Lille, Lab Paul Painleve, CNRS, UMR 8524, Bat M2, F-59655 Villeneuve Dascq, France
[4] Univ Lille, Labex CEMPI ANR LABX 0007 01, Bat M2, Villeneuve Dascq, France
来源
ENSEIGNEMENT MATHEMATIQUE | 2024年 / 70卷 / 1-2期
关键词
Furstenberg set; Sidon set; Khinchin class; uniform distribution; martingale; INTEGERS; SEQUENCES; THEOREM; NUMBERS; SERIES;
D O I
10.4171/LEM/1040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some number -theoretic, ergodic and harmonic analysis properties of the Furstenberg set of integers S = { 2(j) 3(k)} and compare them to those of its random analogue T. In this half -expository work, we show for example that S is "Khinchin distributed", is far from being Hartman uniformly distributed while T is, also that S is a Delta (p)-set for all 2 < p < infinity and that T is a p -Rider set for all p such that 4/3 < p < 2. Measure -theoretic and probabilistic techniques, notably martingales, play an important role in this work.
引用
收藏
页码:61 / 120
页数:60
相关论文
共 50 条
  • [1] FURSTENBERG SETS FOR A FRACTAL SET OF DIRECTIONS
    Molter, Ursula
    Rela, Ezequiel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2753 - 2765
  • [2] Random walks on random coset spaces with applications to Furstenberg entropy
    Lewis Bowen
    Inventiones mathematicae, 2014, 196 : 485 - 510
  • [3] Random walks on random coset spaces with applications to Furstenberg entropy
    Bowen, Lewis
    INVENTIONES MATHEMATICAE, 2014, 196 (02) : 485 - 510
  • [4] Furstenberg entropy of intersectional invariant random subgroups
    Hartman, Yair
    Yadin, Ariel
    COMPOSITIO MATHEMATICA, 2018, 154 (10) : 2239 - 2265
  • [5] Counter-examples to an infinitesimal version of the Furstenberg conjecture
    Kloeckner, Benoit R.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 564 - 571
  • [6] Furstenberg Theory of Mixed Random-Quasiperiodic Cocycles
    Ao Cai
    Pedro Duarte
    Silvius Klein
    Communications in Mathematical Physics, 2023, 402 : 447 - 487
  • [7] Random iteration of Mobius transformations and Furstenberg's theorem
    Ambroladze, A
    Wallin, H
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 953 - 962
  • [8] Random set and its applications in information fusion
    Institute of Information and Control, Hangzhou Dianzi University, Hangzhou 310018, China
    Dianzi Yu Xinxi Xuebao, 2006, 11 (2199-2204):
  • [9] Furstenberg Theory of Mixed Random-Quasiperiodic Cocycles
    Cai, Ao
    Duarte, Pedro
    Klein, Silvius
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 447 - 487
  • [10] A Version of the Random Directed Forest and its Convergence to the Brownian Web
    Glauco Valle
    Leonel Zuaznábar
    Journal of Theoretical Probability, 2023, 36 : 948 - 1002