The Furstenberg set and its random version

被引:1
|
作者
Fan, Aihua [1 ,2 ]
Queffelec, Herve [3 ,4 ]
Queffelec, Martine [3 ,4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Univ Picardie, LAMFA, UMR 7352, CNRS, 33 rue St Leu, F-80039 Amiens, France
[3] Univ Lille, Lab Paul Painleve, CNRS, UMR 8524, Bat M2, F-59655 Villeneuve Dascq, France
[4] Univ Lille, Labex CEMPI ANR LABX 0007 01, Bat M2, Villeneuve Dascq, France
来源
ENSEIGNEMENT MATHEMATIQUE | 2024年 / 70卷 / 1-2期
关键词
Furstenberg set; Sidon set; Khinchin class; uniform distribution; martingale; INTEGERS; SEQUENCES; THEOREM; NUMBERS; SERIES;
D O I
10.4171/LEM/1040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some number -theoretic, ergodic and harmonic analysis properties of the Furstenberg set of integers S = { 2(j) 3(k)} and compare them to those of its random analogue T. In this half -expository work, we show for example that S is "Khinchin distributed", is far from being Hartman uniformly distributed while T is, also that S is a Delta (p)-set for all 2 < p < infinity and that T is a p -Rider set for all p such that 4/3 < p < 2. Measure -theoretic and probabilistic techniques, notably martingales, play an important role in this work.
引用
收藏
页码:61 / 120
页数:60
相关论文
共 50 条