Transitions on a noncompact Cantor set and random walks on its defining tree

被引:13
|
作者
Kigami, Jun [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
关键词
Noncompact Cantor set; p-adic numbers; Tree; Jump process; Dirichlet forms; Random walks; Martin boundary; PARABOLIC HARNACK INEQUALITIES; DIRICHLET FORMS; P-ADICS;
D O I
10.1214/12-AIHP496
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs. of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures. Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.
引用
收藏
页码:1090 / 1129
页数:40
相关论文
共 50 条
  • [1] Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees
    Kigami, Jun
    ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2674 - 2730
  • [2] Random walks on a tree with applications
    Ma, Fei
    Wang, Ping
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [3] TRANSLATING THE CANTOR SET BY A RANDOM REAL
    Dougherty, Randall
    Lutz, Jack H.
    Mauldin, R. Daniel
    Teutsch, Jason
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (06) : 3027 - 3041
  • [4] Random walks in random media on a cayley tree
    Rozikov U.A.
    Ukrainian Mathematical Journal, 2001, 53 (10) : 1688 - 1702
  • [5] Packing dimension of measures on a random Cantor set
    Baek, IS
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (05) : 933 - 944
  • [6] THE DIFFERENCE SET OF 2 RANDOM CANTOR SETS
    LARSSON, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (10): : 735 - 738
  • [7] Biased random walks on the interlacement set
    Fribergh, Alexander
    Popov, Serguei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1341 - 1358
  • [8] ISOTROPIC RANDOM-WALKS IN A TREE
    SAWYER, S
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 42 (04): : 279 - 292
  • [9] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [10] THE EXACT HAUSDORFF MEASURE FOR RANDOM REORDERING OF CANTOR SET
    HU, XY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1995, 38 (03): : 273 - 286