The Furstenberg set and its random version

被引:1
|
作者
Fan, Aihua [1 ,2 ]
Queffelec, Herve [3 ,4 ]
Queffelec, Martine [3 ,4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Univ Picardie, LAMFA, UMR 7352, CNRS, 33 rue St Leu, F-80039 Amiens, France
[3] Univ Lille, Lab Paul Painleve, CNRS, UMR 8524, Bat M2, F-59655 Villeneuve Dascq, France
[4] Univ Lille, Labex CEMPI ANR LABX 0007 01, Bat M2, Villeneuve Dascq, France
来源
ENSEIGNEMENT MATHEMATIQUE | 2024年 / 70卷 / 1-2期
关键词
Furstenberg set; Sidon set; Khinchin class; uniform distribution; martingale; INTEGERS; SEQUENCES; THEOREM; NUMBERS; SERIES;
D O I
10.4171/LEM/1040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some number -theoretic, ergodic and harmonic analysis properties of the Furstenberg set of integers S = { 2(j) 3(k)} and compare them to those of its random analogue T. In this half -expository work, we show for example that S is "Khinchin distributed", is far from being Hartman uniformly distributed while T is, also that S is a Delta (p)-set for all 2 < p < infinity and that T is a p -Rider set for all p such that 4/3 < p < 2. Measure -theoretic and probabilistic techniques, notably martingales, play an important role in this work.
引用
收藏
页码:61 / 120
页数:60
相关论文
共 50 条
  • [31] RANDOM VERSION OF THE THEOREMS OF THE ALTERNATIVE
    LUC, DT
    MATHEMATISCHE NACHRICHTEN, 1986, 129 : 149 - 155
  • [32] Special Sensitive System via Furstenberg Family and Its Applications
    Diaz, Mauricio
    12TH CHAOTIC MODELING AND SIMULATION INTERNATIONAL CONFERENCE, 2020, : 53 - 65
  • [33] RANDOM SET PARTITIONS
    GOH, WMY
    SCHMUTZ, E
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) : 419 - 436
  • [34] The lifetime of a random set
    Kiessler, PC
    Nimitkiatklai, K
    JOURNAL OF APPLIED PROBABILITY, 2005, 42 (02) : 566 - 580
  • [35] COVERING BY A RANDOM SET
    FORTET, R
    KAMBOUZIA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (11): : 397 - 398
  • [36] Random Permutation Set
    Deng, Yong
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2022, 17 (01)
  • [37] On the measure of a random set
    Robbins, HE
    ANNALS OF MATHEMATICAL STATISTICS, 1944, 15 : 70 - 81
  • [38] A continuous time version of random walks in a random potential
    Coyle, LN
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 64 (02) : 209 - 235
  • [39] Weighted version of strong law of large numbers for a class of random variables and its applications
    Yi Wu
    Xuejun Wang
    Shuhe Hu
    Lianqiang Yang
    TEST, 2018, 27 : 379 - 406
  • [40] Weighted version of strong law of large numbers for a class of random variables and its applications
    Wu, Yi
    Wang, Xuejun
    Hu, Shuhe
    Yang, Lianqiang
    TEST, 2018, 27 (02) : 379 - 406