FURSTENBERG SETS FOR A FRACTAL SET OF DIRECTIONS

被引:18
|
作者
Molter, Ursula [1 ,2 ]
Rela, Ezequiel [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, Argentina
[2] IMAS UBA CONICET, Buenos Aires, DF, Argentina
关键词
Furstenberg sets; Hausdorff dimension; dimension function; Kakeya sets;
D O I
10.1090/S0002-9939-2011-11111-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the behavior of the size of Furstenberg sets with respect to the size of the set of directions defining it. For any pair alpha, beta is an element of (0,1], we will say that a set E subset of R-2 is an F-alpha beta-set if there is a subset L of the unit circle of Hausdorff dimension at least beta and, for each direction e in L, there is a line segment l(e) in the direction of e such that the Hausdorff dimension of the set E boolean AND l(e) is equal to or greater than alpha. The problem is considered in the wider scenario of generalized Hausdorff measures, giving estimates on the appropriate dimension functions for each class of Furstenberg sets. As a corollary of our main results, we obtain that dim(E) >= max {alpha + beta/2; 2 alpha + beta - 1} for any E is an element of F-alpha beta. In particular we are able to extend previously known results to the "endpoint" alpha = 0 case.
引用
收藏
页码:2753 / 2765
页数:13
相关论文
共 50 条
  • [41] Fundamental Sets of Fractal Functions
    M. A. Navascués
    A. K. B. Chand
    Acta Applicandae Mathematicae, 2008, 100 : 247 - 261
  • [42] DIMENSION PRINTS OF FRACTAL SETS
    REYES, M
    ROGERS, CA
    MATHEMATIKA, 1994, 41 (81) : 68 - 94
  • [43] Fractal dimensions for dissipative sets
    Stratmann, B
    Vogt, R
    NONLINEARITY, 1997, 10 (02) : 565 - 577
  • [44] Frames built on fractal sets
    Thirulogasanthar, K
    Bahsoun, W
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) : 79 - 98
  • [45] Lipschitz equivalence of fractal sets in ℝ
    GuoTai Deng
    XingGang He
    Science China Mathematics, 2012, 55 : 2095 - 2107
  • [46] ARE TOPOGRAPHIC DATA SETS FRACTAL
    GILBERT, LE
    PURE AND APPLIED GEOPHYSICS, 1989, 131 (1-2) : 241 - 254
  • [47] Intersections of moving fractal sets
    Mandre, I.
    Kalda, J.
    EPL, 2013, 103 (01)
  • [48] Fractal sets in control systems
    Cheng, Daizhan
    Applied Mathematics and Mechanics (English Edition), 1993, 14 (08) : 735 - 744
  • [49] Angular projections of fractal sets
    Durrer, R
    Eckmann, JP
    Labini, FS
    Montuori, M
    Pietronero, L
    EUROPHYSICS LETTERS, 1997, 40 (05): : 491 - 496
  • [50] CONTINUATION PROBLEM AND FRACTAL SETS
    Kabanikhin, S. I.
    Bektemesov, M. A.
    Shishlenin, M. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C97 - C103