On nonfeasible edge sets in matching-covered graphs

被引:1
|
作者
Zhao, Xiao [1 ]
Dong, Fengming [2 ]
Chen, Sheng [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
matching-covered graph; nonfeasible edge set; EAR-DECOMPOSITIONS; PERFECT MATCHINGS;
D O I
10.1002/jgt.22555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetG=(V,E)be a matching-covered graph andXbe an edge set ofG.Xis said to be feasible if there exist two perfect matchingsM1andM2inGsuch that|M1 boolean AND X|not equivalent to|M2 boolean AND X| (mod 2). For anyV0 subset of V,Xis said to be switching-equivalent toX circle plus backward difference G(V0), where backward difference G(V0)is the set of edges inGeach of which has exactly one end inV0andA circle plus Bis the symmetric difference of two setsAandB. Lukot'ka and Rollova showed that whenGis regular and bipartite,Xis nonfeasible if and only ifXis switching-equivalent to null . This article extends Lukot'ka and Rollova's result by showing that this conclusion holds as long asGis matching-covered and bipartite. This article also studies matching-covered graphsGwhose nonfeasible edge sets are switching-equivalent to null orEand partially characterizes these matching-covered graphs in terms of their ear decompositions. Another aim of this article is to construct infinite manyr-connected andr-regular graphs of class 1 containing nonfeasible edge sets not switching-equivalent to either null orEfor an arbitrary integerrwithr >= 3, which provides a negative answer to a problem proposed by He et al.
引用
收藏
页码:192 / 208
页数:17
相关论文
共 50 条
  • [21] On f-edge covered critical graphs
    Liu, G., 2012, Charles Babbage Research Centre (83):
  • [22] Optimal ear decompositions of matching covered graphs and bases for the matching lattice
    de Carvalho, MH
    Lucchesi, CL
    Murty, USR
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 85 (01) : 59 - 93
  • [23] On edge-sets of bicliques in graphs
    Groshaus, Marina
    Hell, Pavol
    Stacho, Juraj
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2698 - 2708
  • [24] EDGE OPEN PACKING SETS IN GRAPHS
    Chelladurai, Gayathri
    Kalimuthu, Karuppasamy
    Soundararajan, Saravanakumar
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3765 - 3776
  • [25] On the smallest edge defining sets of graphs
    Akbari, S
    Khosrovshahi, GB
    ARS COMBINATORIA, 2002, 63 : 293 - 303
  • [26] Feedback edge sets in temporal graphs
    Haag, Roman
    Molter, Hendrik
    Niedermeier, Rolf
    Renken, Malte
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 65 - 78
  • [27] Efficient coverage of edge sets in graphs
    Dunbar, JE
    Hattingh, JH
    McRae, AA
    Slater, PJ
    UTILITAS MATHEMATICA, 1997, 51 : 183 - 192
  • [28] Matching Transversal Edge Domination in Graphs
    Alwardi, Anwar
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 919 - 929
  • [29] Claw-free minimal matching covered graphs
    Zhang, Yipei
    Wang, Xiumei
    Yuan, Jinjiang
    Ng, C. T.
    Cheng, T. C. E.
    DISCRETE APPLIED MATHEMATICS, 2025, 370 : 11 - 21
  • [30] ON TWO UNSOLVED PROBLEMS CONCERNING MATCHING COVERED GRAPHS
    Lucchesi, Claudio L.
    De Carvalho, Marcelo H.
    Kothari, Nishad
    Murty, U. S. R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 1478 - 1504