On edge-sets of bicliques in graphs

被引:3
|
作者
Groshaus, Marina [2 ]
Hell, Pavol [3 ]
Stacho, Juraj [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Phys & Comp Sci, Waterloo, ON N2L 3C5, Canada
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Comp, Buenos Aires, DF, Argentina
[3] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Biclique; Clique graph; Intersection graph; Hypergraph; Conformal; Helly; 2-section; CLIQUE GRAPHS; HELLY GRAPHS;
D O I
10.1016/j.dam.2012.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction, the triangular prism. Using this result, we characterize graphs whose edge-biclique hypergraph is Helly and provide a polynomial time recognition algorithm. We further study a hereditary version of this property and show that it also admits polynomial time recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs. We conclude by describing some interesting properties of the 2-section graph of the edge-biclique hypergraph. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2698 / 2708
页数:11
相关论文
共 50 条
  • [1] EDGE-SETS OF RIGID AND CORIGID GRAPHS
    HELL, P
    NESETRIL, J
    MATHEMATISCHE NACHRICHTEN, 1979, 87 : 63 - 69
  • [2] On Independent Sets and Bicliques in Graphs
    Gaspers, Serge
    Kratsch, Dieter
    Liedloff, Mathieu
    ALGORITHMICA, 2012, 62 (3-4) : 637 - 658
  • [3] On Independent Sets and Bicliques in Graphs
    Gaspers, Serge
    Kratsch, Dieter
    Liedloff, Mathieu
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 171 - +
  • [4] On Independent Sets and Bicliques in Graphs
    Serge Gaspers
    Dieter Kratsch
    Mathieu Liedloff
    Algorithmica, 2012, 62 : 637 - 658
  • [5] Finding maximum edge bicliques in convex bipartite graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Jörg-Rüdiger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, 6196 LNCS : 140 - 149
  • [6] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Joerg-Ruediger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    ALGORITHMICA, 2012, 64 (02) : 311 - 325
  • [7] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Nussbaum, Doron
    Pu, Shuye
    Sack, Joerg-Ruediger
    Uno, Takeaki
    Zarrabi-Zadeh, Hamid
    COMPUTING AND COMBINATORICS, 2010, 6196 : 140 - +
  • [8] Maximum Edge Bicliques in Tree Convex Bipartite Graphs
    Chen, Hao
    Liu, Tian
    FRONTIERS IN ALGORITHMICS, FAW 2017, 2017, 10336 : 47 - 55
  • [9] Finding Maximum Edge Bicliques in Convex Bipartite Graphs
    Doron Nussbaum
    Shuye Pu
    Jörg-Rüdiger Sack
    Takeaki Uno
    Hamid Zarrabi-Zadeh
    Algorithmica, 2012, 64 : 311 - 325
  • [10] Bicolored independent sets and bicliques
    Couturier, Jean-Francois
    Kratsch, Dieter
    INFORMATION PROCESSING LETTERS, 2012, 112 (8-9) : 329 - 334