On nonfeasible edge sets in matching-covered graphs

被引:1
|
作者
Zhao, Xiao [1 ]
Dong, Fengming [2 ]
Chen, Sheng [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
matching-covered graph; nonfeasible edge set; EAR-DECOMPOSITIONS; PERFECT MATCHINGS;
D O I
10.1002/jgt.22555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetG=(V,E)be a matching-covered graph andXbe an edge set ofG.Xis said to be feasible if there exist two perfect matchingsM1andM2inGsuch that|M1 boolean AND X|not equivalent to|M2 boolean AND X| (mod 2). For anyV0 subset of V,Xis said to be switching-equivalent toX circle plus backward difference G(V0), where backward difference G(V0)is the set of edges inGeach of which has exactly one end inV0andA circle plus Bis the symmetric difference of two setsAandB. Lukot'ka and Rollova showed that whenGis regular and bipartite,Xis nonfeasible if and only ifXis switching-equivalent to null . This article extends Lukot'ka and Rollova's result by showing that this conclusion holds as long asGis matching-covered and bipartite. This article also studies matching-covered graphsGwhose nonfeasible edge sets are switching-equivalent to null orEand partially characterizes these matching-covered graphs in terms of their ear decompositions. Another aim of this article is to construct infinite manyr-connected andr-regular graphs of class 1 containing nonfeasible edge sets not switching-equivalent to either null orEfor an arbitrary integerrwithr >= 3, which provides a negative answer to a problem proposed by He et al.
引用
收藏
页码:192 / 208
页数:17
相关论文
共 50 条
  • [31] Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets
    Hamilton, Kathleen E.
    Humble, Travis S.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (04)
  • [32] Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets
    Kathleen E. Hamilton
    Travis S. Humble
    Quantum Information Processing, 2017, 16
  • [33] EDGE-SETS OF RIGID AND CORIGID GRAPHS
    HELL, P
    NESETRIL, J
    MATHEMATISCHE NACHRICHTEN, 1979, 87 : 63 - 69
  • [34] Edge Geodetic Dominating Sets of Some Graphs
    Quije, Clint Joy M.
    Mariano, Rochelleo E.
    Ahmad, Eman C.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [35] Eulerian edge sets in locally finite graphs
    Eli Berger
    Henning Bruhn
    Combinatorica, 2011, 31 : 21 - 38
  • [36] Edge search in graphs with restricted test sets
    Gerzen, T.
    DISCRETE MATHEMATICS, 2009, 309 (20) : 5932 - 5942
  • [37] Eulerian edge sets in locally finite graphs
    Berger, Eli
    Bruhn, Henning
    COMBINATORICA, 2011, 31 (01) : 21 - 38
  • [38] Monitoring Edge-Geodetic Sets in Graphs
    Foucaud, Florent
    Narayanan, Krishna
    Sulochana, Lekshmi Ramasubramony
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2023, 2023, 13947 : 245 - 256
  • [39] Matching and edge-connectivity in regular graphs
    O, Suil
    West, Douglas B.
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 324 - 329
  • [40] The matching energy of graphs with given edge connectivity
    Shengjin Ji
    Hongping Ma
    Gang Ma
    Journal of Inequalities and Applications, 2015