A Novel, Evolutionary, Simulated Annealing inspired Algorithm for the Multi-Objective Optimization of Combinatorial Problems

被引:4
|
作者
Nino, Elias D. [1 ,2 ]
Ardila, Carlos J. [2 ]
Chinchilla, Anangelica [3 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[2] Univ Norte, Dept Comp Sci, Barranquilla, Colombia
[3] Univ Norte, Dept Ind Engn, Barranquilla, Colombia
关键词
Combinatorial Optimization; Genetic Algorithms; Simulated Annealing; Multi-objective Optimization; GENETIC ALGORITHM;
D O I
10.1016/j.procs.2012.04.218
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper states a novel hybrid-metaheuristic based on deterministic swapping, evolutionary algorithms and simulated annealing inspired algorithms for the multi-objective optimization of combinatorial problems. The proposed algorithm is named EMSA. It is an improvement of MODS algorithm. Unlike MODS, EMSA works using a search direction given by the assignation of weights to each objective function of the combinatorial problem to optimize. Lastly, EMSA is tested using well know instances of the Bi-Objective Traveling Salesman Problem (BTSP) from TSPLIB. Its results were compared with MODS metaheuristic (its predecessor). The comparison was made using metrics from the specialized literature such as Spacing, Generational Distance, Inverse Generational Distance and Non-Dominated Generation Vectors. In every case, the EMSA results on the metrics were always better and in some of those cases, the superiority was 100%.
引用
收藏
页码:1992 / 1998
页数:7
相关论文
共 50 条
  • [41] Multi-objective generalized normal distribution optimization: a novel algorithm for multi-objective problems
    Khodadadi, Nima
    Khodadadi, Ehsan
    Abdollahzadeh, Benyamin
    EI-Kenawy, El-Sayed M.
    Mardanpour, Pezhman
    Zhao, Weiguo
    Gharehchopogh, Farhad Soleimanian
    Mirjalili, Seyedali
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 10589 - 10631
  • [42] A Novel Particle Swarm Optimization Algorithm for Multi-Objective Combinatorial Optimization Problem
    Roy, Rahul
    Dehuri, Satchidananda
    Cho, Sung Bae
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2011, 2 (04) : 41 - 57
  • [43] A novel multi-objective evolutionary algorithm
    Zheng, Bojin
    Hu, Ting
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 1029 - +
  • [44] Quantum-inspired multi-objective optimization evolutionary algorithm based on decomposition
    Wang, Yang
    Li, Yangyang
    Jiao, Licheng
    SOFT COMPUTING, 2016, 20 (08) : 3257 - 3272
  • [45] Quantum-inspired multi-objective optimization evolutionary algorithm based on decomposition
    Yang Wang
    Yangyang Li
    Licheng Jiao
    Soft Computing, 2016, 20 : 3257 - 3272
  • [46] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Khalid, Asmaa M. M.
    Hamza, Hanaa M. M.
    Mirjalili, Seyedali
    Hosny, Khaid M. M.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 17319 - 17347
  • [47] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Asmaa M. Khalid
    Hanaa M. Hamza
    Seyedali Mirjalili
    Khaid M. Hosny
    Neural Computing and Applications, 2023, 35 : 17319 - 17347
  • [48] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Xiao, Jin-ke
    Li, Wei-min
    Xiao, Xin-rong
    Cheng-zhong, L., V
    APPLIED INTELLIGENCE, 2017, 46 (03) : 739 - 755
  • [49] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Jin-ke Xiao
    Wei-min Li
    Xin-rong Xiao
    Cheng-zhong LV
    Applied Intelligence, 2017, 46 : 739 - 755
  • [50] A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    Wang, Honghai
    APPLIED SOFT COMPUTING, 2019, 80 : 42 - 56