MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems

被引:11
|
作者
Khalid, Asmaa M. M. [1 ]
Hamza, Hanaa M. M. [1 ]
Mirjalili, Seyedali [2 ]
Hosny, Khaid M. M. [1 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Dept Informat Technol, Zagazig 44519, Egypt
[2] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimisat, Brisbane, Qld 4006, Australia
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 23期
关键词
Coronavirus; Multi-objective; Frameshifting; Dominance; Convergence; Coverage; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; OPTIMAL-DESIGN; OBJECTIVES; DISCRETE; BEAM;
D O I
10.1007/s00521-023-08587-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel multi-objective Coronavirus disease optimization algorithm (MOCOVIDOA) is presented to solve global optimization problems with up to three objective functions. This algorithm used an archive to store non-dominated POSs during the optimization process. Then, a roulette wheel selection mechanism selects the effective archived solutions by simulating the frameshifting technique Coronavirus particles use for replication. We evaluated the efficiency by solving twenty-seven multi-objective (21 benchmarks & 6 real-world engineering design) problems, where the results are compared against five common multi-objective metaheuristics. The comparison uses six evaluation metrics, including IGD, GD, MS, SP, HV, and delta p (DP). The obtained results and the Wilcoxon rank-sum test show the superiority of this novel algorithm over the existing algorithms and reveal its applicability in solving multi-objective problems.
引用
收藏
页码:17319 / 17347
页数:29
相关论文
共 50 条
  • [1] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Asmaa M. Khalid
    Hanaa M. Hamza
    Seyedali Mirjalili
    Khaid M. Hosny
    Neural Computing and Applications, 2023, 35 : 17319 - 17347
  • [2] Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
    Zouache, Djaafar
    Arby, Yahya Quid
    Nouioua, Farid
    Ben Abdelaziz, Fouad
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 129 : 377 - 391
  • [3] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Xiao, Jin-ke
    Li, Wei-min
    Xiao, Xin-rong
    Cheng-zhong, L., V
    APPLIED INTELLIGENCE, 2017, 46 (03) : 739 - 755
  • [4] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Jin-ke Xiao
    Wei-min Li
    Xin-rong Xiao
    Cheng-zhong LV
    Applied Intelligence, 2017, 46 : 739 - 755
  • [5] Multi-objective Jaya Algorithm for Solving Constrained Multi-objective Optimization Problems
    Naidu, Y. Ramu
    Ojha, A. K.
    Devi, V. Susheela
    ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 89 - 98
  • [6] MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
    Jangir, Pradeep
    Buch, Hitarth
    Mirjalili, Seyedali
    Manoharan, Premkumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (01) : 169 - 195
  • [7] A Multi-Objective Carnivorous Plant Algorithm for Solving Constrained Multi-Objective Optimization Problems
    Yang, Yufei
    Zhang, Changsheng
    BIOMIMETICS, 2023, 8 (02)
  • [8] MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
    Pradeep Jangir
    Hitarth Buch
    Seyedali Mirjalili
    Premkumar Manoharan
    Evolutionary Intelligence, 2023, 16 : 169 - 195
  • [9] Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
    Mirjalili, Seyedali
    Jangir, Pradeep
    Saremi, Shahrzad
    APPLIED INTELLIGENCE, 2017, 46 (01) : 79 - 95
  • [10] Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
    Seyedali Mirjalili
    Pradeep Jangir
    Shahrzad Saremi
    Applied Intelligence, 2017, 46 : 79 - 95