A Novel, Evolutionary, Simulated Annealing inspired Algorithm for the Multi-Objective Optimization of Combinatorial Problems

被引:4
|
作者
Nino, Elias D. [1 ,2 ]
Ardila, Carlos J. [2 ]
Chinchilla, Anangelica [3 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[2] Univ Norte, Dept Comp Sci, Barranquilla, Colombia
[3] Univ Norte, Dept Ind Engn, Barranquilla, Colombia
关键词
Combinatorial Optimization; Genetic Algorithms; Simulated Annealing; Multi-objective Optimization; GENETIC ALGORITHM;
D O I
10.1016/j.procs.2012.04.218
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper states a novel hybrid-metaheuristic based on deterministic swapping, evolutionary algorithms and simulated annealing inspired algorithms for the multi-objective optimization of combinatorial problems. The proposed algorithm is named EMSA. It is an improvement of MODS algorithm. Unlike MODS, EMSA works using a search direction given by the assignation of weights to each objective function of the combinatorial problem to optimize. Lastly, EMSA is tested using well know instances of the Bi-Objective Traveling Salesman Problem (BTSP) from TSPLIB. Its results were compared with MODS metaheuristic (its predecessor). The comparison was made using metrics from the specialized literature such as Spacing, Generational Distance, Inverse Generational Distance and Non-Dominated Generation Vectors. In every case, the EMSA results on the metrics were always better and in some of those cases, the superiority was 100%.
引用
收藏
页码:1992 / 1998
页数:7
相关论文
共 50 条
  • [31] A novel evolutionary root system growth algorithm for solving multi-objective optimization problems
    Ma, Lianbo
    Wang, Xingwei
    Huang, Min
    Zhang, Hao
    Chen, Hanning
    APPLIED SOFT COMPUTING, 2017, 57 : 379 - 398
  • [32] A Novel Physics Inspired Multi-objective Optimization Algorithm: Multiple Objective Gravitational Optimization
    Chatterjee, Rajdeep
    Das, Madhabananda
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NETWORKS (CINE), 2015, : 32 - 35
  • [33] QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
    Tao, F.
    Laili, Y. J.
    Zhang, L.
    Zhang, Z. H.
    Nee, A. Y. C.
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2014, 90 (02): : 182 - 204
  • [34] Degeneration simulated annealing algorithm for combinatorial optimization problems
    Aylaj, Bouchaib
    Belkasmi, Mostafa
    Zouaki, Hamid
    Berkani, Ahlam
    2015 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2015, : 557 - 562
  • [35] Solving multi-objective optimization problems by a bi-objective evolutionary algorithm
    Wang, Yu-Ping
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1018 - 1024
  • [36] A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems
    Aydin, ME
    Fogarty, TC
    JOURNAL OF HEURISTICS, 2004, 10 (03) : 269 - 292
  • [37] A Distributed Evolutionary Simulated Annealing Algorithm for Combinatorial Optimisation Problems
    M. Emin Aydin
    Terence C. Fogarty
    Journal of Heuristics, 2004, 10 : 269 - 292
  • [38] A novel ε-dominance multi-objective evolutionary algorithms for solving DRS multi-objective optimization problems
    Liu, Liu
    Li, Minqiang
    Lin, Dan
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 96 - +
  • [39] Rake Selection: A Novel Evolutionary Multi-Objective Optimization Algorithm
    Kramer, Oliver
    Koch, Patrick
    KI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5803 : 177 - 184
  • [40] A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm
    Ozkis, Ahmet
    Babalik, Ahmet
    INFORMATION SCIENCES, 2017, 402 : 124 - 148