Bayesian nonparametric estimation of pair correlation function for inhomogeneous spatial point processes

被引:6
|
作者
Yue, Yu Ryan [1 ,2 ]
Loh, Ji Meng [3 ]
机构
[1] CUNY, Dept Stat, New York, NY 10010 USA
[2] CUNY, Baruch Coll, CIS, New York, NY 10010 USA
[3] New Jersey Inst Technol, Newark, NJ 07102 USA
关键词
Bayesian smoothing; inhomogeneous spatial point processes; integrated nested Laplace approximation; pair correlation function; BANDWIDTH; INFERENCE; CLUSTERS; DENSITY; MODELS; BIAS;
D O I
10.1080/10485252.2013.767337
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The pair correlation function (PCF) is a useful tool for studying spatial point patterns. It is often estimated by some nonparametric approach such as kernel smoothing. However, the statistical properties of the kernel estimator are highly dependent on the choice of bandwidth. An inappropriate value of the bandwidth may lead to an estimator with a large bias or variance or both. In this work, we present an alternative PCF estimator based on Bayesian nonparametric regression. The method provides data-driven smoothing and intuitive uncertainty measures, together with efficient computation. The merits of our method are demonstrated via a simulation study and a couple of applications involving astronomy data and data on restaurant locations.
引用
收藏
页码:463 / 474
页数:12
相关论文
共 50 条
  • [31] Bayesian nonparametric estimation for reinforced Markov renewal processes
    Bulla P.
    Muliere P.
    Statistical Inference for Stochastic Processes, 2007, 10 (3) : 283 - 303
  • [32] Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation
    Allard, D
    Fraley, C
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1485 - 1493
  • [33] ON BAYESIAN NONPARAMETRIC-ESTIMATION FOR STOCHASTIC-PROCESSES
    THOMPSON, ME
    THAVANESWARAN, A
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 33 (01) : 131 - 141
  • [34] Asymptotic properties of an empirical K-function for inhomogeneous spatial point processes
    Zhao, Jin
    Wang, Jinde
    STATISTICS, 2010, 44 (03) : 261 - 267
  • [35] Bayesian Wombling for Spatial Point Processes
    Liang, Shengde
    Banerjee, Sudipto
    Carlin, Bradley P.
    BIOMETRICS, 2009, 65 (04) : 1243 - 1253
  • [36] Information criteria for inhomogeneous spatial point processes
    Choiruddin, Achmad
    Coeurjolly, Jean-Francois
    Waagepetersen, Rasmus
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (01) : 119 - 143
  • [37] Inference for Clustered Inhomogeneous Spatial Point Processes
    Henrys, P. A.
    Brown, P. E.
    BIOMETRICS, 2009, 65 (02) : 423 - 430
  • [38] Nonparametric estimation of the dependence of a spatial point process on spatial covariates
    Baddeley, Adrian
    Chang, Ya-Mei
    Song, Yong
    Turner, Rolf
    STATISTICS AND ITS INTERFACE, 2012, 5 (02) : 221 - 236
  • [39] Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes
    Fuentes-Santos, Isabel
    Gonzalez-Manteiga, Wenceslao
    Mateu, Jorge
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (02) : 416 - 435
  • [40] Pair correlation function of inhomogeneous hard sphere fluids
    Götzelmann, B.
    Dietrich, S.
    Fluid Phase Equilibria, 1998, 150 (151): : 565 - 571