Bayesian nonparametric estimation of pair correlation function for inhomogeneous spatial point processes

被引:6
|
作者
Yue, Yu Ryan [1 ,2 ]
Loh, Ji Meng [3 ]
机构
[1] CUNY, Dept Stat, New York, NY 10010 USA
[2] CUNY, Baruch Coll, CIS, New York, NY 10010 USA
[3] New Jersey Inst Technol, Newark, NJ 07102 USA
关键词
Bayesian smoothing; inhomogeneous spatial point processes; integrated nested Laplace approximation; pair correlation function; BANDWIDTH; INFERENCE; CLUSTERS; DENSITY; MODELS; BIAS;
D O I
10.1080/10485252.2013.767337
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The pair correlation function (PCF) is a useful tool for studying spatial point patterns. It is often estimated by some nonparametric approach such as kernel smoothing. However, the statistical properties of the kernel estimator are highly dependent on the choice of bandwidth. An inappropriate value of the bandwidth may lead to an estimator with a large bias or variance or both. In this work, we present an alternative PCF estimator based on Bayesian nonparametric regression. The method provides data-driven smoothing and intuitive uncertainty measures, together with efficient computation. The merits of our method are demonstrated via a simulation study and a couple of applications involving astronomy data and data on restaurant locations.
引用
收藏
页码:463 / 474
页数:12
相关论文
共 50 条
  • [41] Pair correlation function of inhomogeneous hard sphere fluids
    Gotzelmann, B
    Dietrich, S
    FLUID PHASE EQUILIBRIA, 1998, 150 : 565 - 571
  • [42] Pair correlation function for smoky plasmas with inhomogeneous ionization
    Dragan, Grygory S.
    Kosktli, Yevgen V.
    Vishnyakov, Vladimir I.
    MULTIFACETS OF DUSTY PLASMA, 2008, 1041 : 203 - 204
  • [43] A J-function for inhomogeneous point processes
    van Lieshout, M. N. M.
    STATISTICA NEERLANDICA, 2011, 65 (02) : 183 - 201
  • [44] Bayesian inference for spatially inhomogeneous pairwise interacting point processes
    Bognar, MA
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (01) : 1 - 18
  • [45] On parameter estimation for doubly inhomogeneous cluster point processes
    Mrkvicka, Tomas
    Soubeyrand, Samuel
    SPATIAL STATISTICS, 2017, 20 : 191 - 205
  • [46] BAYESIAN NONPARAMETRIC STATISTICAL-INFERENCE FOR POISSON POINT-PROCESSES
    LO, AY
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 59 (01): : 55 - 66
  • [47] Robust nonparametric estimation of the intensity function of point data
    Carlo Grillenzoni
    AStA Advances in Statistical Analysis, 2008, 92
  • [48] Robust nonparametric estimation of the intensity function of point data
    Grillenzoni, Carlo
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2008, 92 (02) : 117 - 134
  • [49] Contrast response function estimation with nonparametric Bayesian active learning
    Marticorena, Dom C. P.
    Wong, Quinn Wai
    Browning, Jake
    Wilbur, Ken
    Jayakumar, Samyukta
    Davey, Pinakin Gunvant
    Seitz, Aaron R.
    Gardner, Jacob R.
    Barbour, Dennis L.
    JOURNAL OF VISION, 2024, 24 (01): : 1 - 18
  • [50] Nonparametric robust function estimation for integrated diffusion processes
    Wang, Yunyan
    Tang, Mingtian
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3048 - 3065