共 50 条
Nonparametric estimation of the dependence of a spatial point process on spatial covariates
被引:2
|作者:
Baddeley, Adrian
[1
,2
]
Chang, Ya-Mei
[3
]
Song, Yong
[4
]
Turner, Rolf
[5
]
机构:
[1] CSIRO Math Informat & Stat, Perth, WA, Australia
[2] Univ Western Australia, Sch Math & Stat, Nedlands, WA 6009, Australia
[3] Tamkang Univ, Dept Stat, Taipei, Taiwan
[4] CSIRO Land & Water Highett, Melbourne, Vic, Australia
[5] Univ Auckland, Dept Stat, Auckland 1, New Zealand
关键词:
Confidence intervals;
Density estimation;
Kernel smoothing;
Local likelihood;
Logistic regression;
Point process intensity;
Poisson point process;
Geological] prospectivity mapping;
Spatial covariates;
Relative distributions;
Resource selection function;
Weighted distribution;
DENSITY-ESTIMATION;
CONFIDENCE-INTERVALS;
REGRESSION;
DISEASE;
RISK;
PROBABILITY;
BOOTSTRAP;
D O I:
暂无
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In the statistical analysis of spatial point patterns, it is often important to investigate whether the point pattern depends on spatial covariates. This paper describes non-parametric (kernel and local likelihood) methods for estimating the effect of spatial covariates on the point process intensity. Variance estimates and confidence intervals are provided in the case of a Poisson point process. Techniques are demonstrated with simulated examples and with applications to exploration geology and forest ecology.
引用
收藏
页码:221 / 236
页数:16
相关论文