On the Generalized Cluster Algebras of Geometric Type

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ]
Xu, Fan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 West Main St, Whitewater, WI 53190 USA
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
cluster algebra; generalized cluster algebra; lower bound; upper bound; standard monomial;
D O I
10.3842/SIGMA.2020.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop and prove the analogs of some results shown in [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1{52] concerning lower and upper bounds of cluster algebras to the generalized cluster algebras of geometric type. We show that lower bounds coincide with upper bounds under the conditions of acyclicity and coprimality. Consequently, we obtain the standard monomial bases of these generalized cluster algebras. Moreover, in the appendix, we prove that an acyclic generalized cluster algebra is equal to the corresponding generalized upper cluster algebra without the assumption of the existence of coprimality.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Some properties of generalized cluster algebras of geometric type
    Huang, Junyuan
    Chen, Xueqing
    Xu, Fan
    Ding, Ming
    JOURNAL OF ALGEBRA, 2024, 660 : 270 - 290
  • [2] A Geometric Realization Method for Type B Cluster Algebras
    Zhang J.
    Qi X.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2023, 43 (05): : 534 - 539
  • [3] Universal geometric cluster algebras
    Reading, Nathan
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (1-2) : 499 - 547
  • [4] Universal geometric cluster algebras
    Nathan Reading
    Mathematische Zeitschrift, 2014, 277 : 499 - 547
  • [5] STRUCTURE OF SEEDS IN GENERALIZED CLUSTER ALGEBRAS
    Nakanishi, Tomoki
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 277 (01) : 201 - 217
  • [6] A Quantum Analog of Generalized Cluster Algebras
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (06) : 1203 - 1217
  • [7] Cluster Structure on Generalized Weyl Algebras
    Ibrahim Saleh
    Algebras and Representation Theory, 2016, 19 : 1017 - 1041
  • [8] Cluster Structure on Generalized Weyl Algebras
    Saleh, Ibrahim
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (05) : 1017 - 1041
  • [9] A Quantum Analog of Generalized Cluster Algebras
    Liqian Bai
    Xueqing Chen
    Ming Ding
    Fan Xu
    Algebras and Representation Theory, 2018, 21 : 1203 - 1217
  • [10] Scattering diagrams for generalized cluster algebras
    Mou, Lang
    ALGEBRA & NUMBER THEORY, 2024, 18 (12)