On the Generalized Cluster Algebras of Geometric Type

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ]
Xu, Fan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 West Main St, Whitewater, WI 53190 USA
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
cluster algebra; generalized cluster algebra; lower bound; upper bound; standard monomial;
D O I
10.3842/SIGMA.2020.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop and prove the analogs of some results shown in [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1{52] concerning lower and upper bounds of cluster algebras to the generalized cluster algebras of geometric type. We show that lower bounds coincide with upper bounds under the conditions of acyclicity and coprimality. Consequently, we obtain the standard monomial bases of these generalized cluster algebras. Moreover, in the appendix, we prove that an acyclic generalized cluster algebra is equal to the corresponding generalized upper cluster algebra without the assumption of the existence of coprimality.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On quantum cluster algebras of finite type
    Ding, Ming
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (02) : 231 - 240
  • [32] Denominators in cluster algebras of affine type
    Buan, Aslak Bakke
    Marsh, Bethany Rose
    JOURNAL OF ALGEBRA, 2010, 323 (08) : 2083 - 2102
  • [33] On quantum cluster algebras of finite type
    Ming Ding
    Frontiers of Mathematics in China, 2011, 6 : 231 - 240
  • [34] Recognizing cluster algebras of finite type
    Seven, Ahmet I.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [35] Binary geometries, generalized particles and strings, and cluster algebras
    Arkani-Hamed, Nima
    He, Song
    Lam, Thomas
    Thomas, Hugh
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [36] Rogers dilogarithms of higher degree and generalized cluster algebras
    Nakanishi, Tomoki
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (04) : 1269 - 1304
  • [37] On algebras of generalized standard semiregular type
    Skowronski, Andrzej
    Wisniewski, Pawel
    JOURNAL OF ALGEBRA, 2016, 451 : 401 - 460
  • [38] Cluster algebras II: Finite type classification
    Fomin, S
    Zelevinsky, A
    INVENTIONES MATHEMATICAE, 2003, 154 (01) : 63 - 121
  • [39] Cluster algebras II: Finite type classification
    Sergey Fomin
    Andrei Zelevinsky
    Inventiones mathematicae, 2003, 154 : 63 - 121
  • [40] Earthquake Theorem for Cluster Algebras of Finite Type
    Asaka, Takeru
    Ishibashi, Tsukasa
    Kano, Shunsuke
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (08) : 7129 - 7159