On the Generalized Cluster Algebras of Geometric Type

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ]
Xu, Fan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 West Main St, Whitewater, WI 53190 USA
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
cluster algebra; generalized cluster algebra; lower bound; upper bound; standard monomial;
D O I
10.3842/SIGMA.2020.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop and prove the analogs of some results shown in [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1{52] concerning lower and upper bounds of cluster algebras to the generalized cluster algebras of geometric type. We show that lower bounds coincide with upper bounds under the conditions of acyclicity and coprimality. Consequently, we obtain the standard monomial bases of these generalized cluster algebras. Moreover, in the appendix, we prove that an acyclic generalized cluster algebra is equal to the corresponding generalized upper cluster algebra without the assumption of the existence of coprimality.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] CLUSTER-TILTED ALGEBRAS OF TYPE Dn
    Ge, Wenxu
    Lv, Hongbo
    Zhang, Shunhua
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (07) : 2418 - 2432
  • [42] Global geometric deformations of current algebras as Krichever-Novikov type algebras
    Fialowski, A
    Schlichenmaier, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (03) : 579 - 612
  • [43] Cluster algebras of type D: pseudotriangulations approach
    Ceballos, Cesar
    Pilaud, Vincent
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [44] CAMBRIAN FRAMEWORKS FOR CLUSTER ALGEBRAS OF AFFINE TYPE
    Reading, Nathan
    Speyer, David E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (02) : 1429 - 1468
  • [45] Cluster Algebras of Type A2(1)
    Irelli, Giovanni Cerulli
    ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (05) : 977 - 1021
  • [46] Cluster algebras of finite mutation type with coefficients
    Felikson, Anna
    Tumarkin, Pavel
    JOURNAL OF COMBINATORIAL ALGEBRA, 2024, 8 (3-4) : 375 - 418
  • [47] Global Geometric Deformations of Current Algebras as Krichever-Novikov Type Algebras
    Alice Fialowski
    Martin Schlichenmaier
    Communications in Mathematical Physics, 2005, 260 : 579 - 612
  • [48] Polynomial recognition of cluster algebras of finite type
    Dias, Elisangela Silva
    Castonguay, Diane
    JOURNAL OF ALGEBRA, 2016, 457 : 457 - 468
  • [49] Quantum generalized cluster algebras and quantum dilogarithms of higher degrees
    Nakanishi, T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 185 (03) : 1759 - 1768
  • [50] Generalized quantum cluster algebras: The Laurent phenomenon and upper bounds
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    JOURNAL OF ALGEBRA, 2023, 619 : 298 - 322