Large-scale Tikhonov regularization via reduction by orthogonal projection

被引:42
|
作者
Lampe, Joerg [1 ]
Reichel, Lothar [2 ]
Voss, Heinrich [1 ]
机构
[1] Hamburg Univ Technol, Inst Numer Simulat, D-21071 Hamburg, Germany
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Least squares; General-form Tikhonov regularization; Discrepancy principle; Ill-posedness; L-CURVE; ALGORITHM;
D O I
10.1016/j.laa.2011.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new approach to computing an approximate solution of Tikhonov-regularized large-scale ill-posed least-squares problems with a general regularization matrix. The iterative method applies a sequence of projections onto generalized Krylov subspaces. A suitable value of the regularization parameter is determined by the discrepancy principle. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2845 / 2865
页数:21
相关论文
共 50 条
  • [41] A projection-based approach to general-form Tikhonov regularization
    Kilmer, Misha E.
    Hansen, Per Christian
    Espanol, Malena I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01): : 315 - 330
  • [42] Tikhonov regularization versus scale space: A new result
    Florack, L
    Duits, R
    Bierkens, J
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 271 - 274
  • [43] MODEL REDUCTION OF LARGE-SCALE SYSTEMS
    SOONG, TT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (02) : 477 - 482
  • [44] A joint bidiagonalization based iterative algorithm for large scale general-form Tikhonov regularization
    Jia, Zhongxiao
    Yang, Yanfei
    APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 159 - 177
  • [45] Kernel projection algorithm for large-scale SVM problems
    Jiaqi Wang
    Qing Tao
    Jue Wang
    Journal of Computer Science and Technology, 2002, 17 : 556 - 564
  • [46] GRADIENT PROJECTION TECHNIQUES FOR LARGE-SCALE OPTIMIZATION PROBLEMS
    MORE, JJ
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 378 - 381
  • [47] Orthogonal Layers of Parallelism in Large-Scale Eigenvalue Computations
    Alvermann, Andreas
    Hager, Georg
    Fehske, Holger
    ACM TRANSACTIONS ON PARALLEL COMPUTING, 2023, 10 (03)
  • [48] Large-scale projection using integral imaging techniques
    Kotecha, R
    McCormick, M
    Davies, N
    STEREOSCOPIC DISPLAYS AND VIRTUAL REALITY SYSTEMS X, 2003, 5006 : 407 - 416
  • [49] Kernel projection algorithm for large-scale SVM problems
    Wang, JQ
    Tao, Q
    Wang, J
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2002, 17 (05) : 556 - 564
  • [50] A random projection method for large-scale community detection
    Qi, Haobo
    Zhu, Xuening
    Wang, Hansheng
    STATISTICS AND ITS INTERFACE, 2024, 17 (02) : 159 - 172