Large-scale Tikhonov regularization via reduction by orthogonal projection

被引:42
|
作者
Lampe, Joerg [1 ]
Reichel, Lothar [2 ]
Voss, Heinrich [1 ]
机构
[1] Hamburg Univ Technol, Inst Numer Simulat, D-21071 Hamburg, Germany
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Least squares; General-form Tikhonov regularization; Discrepancy principle; Ill-posedness; L-CURVE; ALGORITHM;
D O I
10.1016/j.laa.2011.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new approach to computing an approximate solution of Tikhonov-regularized large-scale ill-posed least-squares problems with a general regularization matrix. The iterative method applies a sequence of projections onto generalized Krylov subspaces. A suitable value of the regularization parameter is determined by the discrepancy principle. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2845 / 2865
页数:21
相关论文
共 50 条
  • [31] Tikhonov regularization with conjugate gradient least squares method for large-scale discrete ill-posed problem in image restoration
    Wang, Wenli
    Qu, Gangrong
    Song, Caiqin
    Ge, Youran
    Liu, Yuhan
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 147 - 161
  • [32] Discrepancy Sets for Combined Least Squares Projection and Tikhonov Regularization
    Reginska, Teresa
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (02) : 202 - 212
  • [33] Projection-Based Model-Order Reduction of Large-Scale Maxwell Systems
    Druskin, V. L.
    Remis, R. F.
    Zaslavsky, M.
    Zimmerling, J. T.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 385 - 388
  • [34] A Note on Tikhonov Regularization of Large Linear Problems
    Martin Hanke
    BIT Numerical Mathematics, 2003, 43 : 449 - 451
  • [35] Fast Unsupervised Projection for Large-Scale Data
    Wang, Jingyu
    Wang, Lin
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3634 - 3644
  • [36] Randomized algorithms for large-scale inverse problems with general Tikhonov regularizations
    Xiang, Hua
    Zou, Jun
    INVERSE PROBLEMS, 2015, 31 (08)
  • [37] Hybrid Tikhonov source current reconstruction method for large-scale problems
    Bod, Mohammad
    Sarraf, Reza
    Moradi, Gholamreza
    Jafargholi, Amir
    Moallemizadeh, Amir
    IET MICROWAVES ANTENNAS & PROPAGATION, 2018, 12 (01) : 77 - 81
  • [38] Large-scale k-means clustering via variance reduction
    Zhao, Yawei
    Ming, Yuewei
    Liu, Xinwang
    Zhu, En
    Zhao, Kaikai
    Yin, Jianping
    NEUROCOMPUTING, 2018, 307 : 184 - 194
  • [39] On the reduction of Tikhonov minimization problems and the construction of regularization matrices
    Dykes, L.
    Reichel, L.
    NUMERICAL ALGORITHMS, 2012, 60 (04) : 683 - 696
  • [40] On the reduction of Tikhonov minimization problems and the construction of regularization matrices
    L. Dykes
    L. Reichel
    Numerical Algorithms, 2012, 60 : 683 - 696