Large-scale Tikhonov regularization via reduction by orthogonal projection

被引:42
|
作者
Lampe, Joerg [1 ]
Reichel, Lothar [2 ]
Voss, Heinrich [1 ]
机构
[1] Hamburg Univ Technol, Inst Numer Simulat, D-21071 Hamburg, Germany
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Least squares; General-form Tikhonov regularization; Discrepancy principle; Ill-posedness; L-CURVE; ALGORITHM;
D O I
10.1016/j.laa.2011.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new approach to computing an approximate solution of Tikhonov-regularized large-scale ill-posed least-squares problems with a general regularization matrix. The iterative method applies a sequence of projections onto generalized Krylov subspaces. A suitable value of the regularization parameter is determined by the discrepancy principle. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2845 / 2865
页数:21
相关论文
共 50 条
  • [21] Augmented Arnoldi-Tikhonov Regularization Methods for Solving Large-Scale Linear Ill-Posed Systems
    Lin, Yiqin
    Bao, Liang
    Cao, Yanhua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [22] Tikhonov regularization of large symmetric problems
    Calvetti, D
    Reichel, L
    Shuibi, A
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) : 127 - 139
  • [23] Tikhonov regularization of large linear problems
    Calvetti, D
    Reichel, L
    BIT NUMERICAL MATHEMATICS, 2003, 43 (02) : 263 - 283
  • [24] Tikhonov Regularization of Large Linear Problems
    Daniela Calvetti
    Lothar Reichel
    BIT Numerical Mathematics, 2003, 43 : 263 - 283
  • [25] On large-scale unconstrained optimization and arbitrary regularization
    Martinez, J. M.
    Santos, L. T.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (01) : 1 - 30
  • [26] On large-scale unconstrained optimization and arbitrary regularization
    J. M. Martínez
    L. T. Santos
    Computational Optimization and Applications, 2022, 81 : 1 - 30
  • [27] A Large-Scale Study on Regularization and Normalization in GANs
    Kurach, Karol
    Lucic, Mario
    Zhai, Xiaohua
    Michalski, Marcin
    Gelly, Sylvain
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [28] A note on Tikhonov regularization of large linear problems
    Hanke, M
    BIT NUMERICAL MATHEMATICS, 2003, 43 (02) : 449 - 451
  • [29] Arnoldi Projection Fractional Tikhonov for Large Scale Ill-Posed Problems
    Wang Zhengsheng
    Mu Liming
    Liu Rongrong
    Xu Guili
    Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (03) : 395 - 402
  • [30] On a generalization of Reginska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization
    Viloche Bazan, Fermin S.
    Borges, Leonardo S.
    Francisco, Juliano B.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 2100 - 2113