Pseudo-Isotropic Centro-Affine Lorentzian Surfaces

被引:5
|
作者
Birembaux, Olivier [1 ]
机构
[1] Univ Polytech Hauts de France, LMI Lab Math Ingn, Campus Mont Houy, F-59313 Valenciennes 9, France
关键词
centro-affine submanifold; isotropic submanifold; Lorentzian submanifold;
D O I
10.3390/math8081284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study centro-affine Lorentzian surfaces M-2 in R-3 which have pseudo-isotropic or lightlike pseudo-isotropic difference tensor. We first show that M-2 is pseudo-isotropic if and only if the Tchebychev form T=0. In that case, M-2 is a an equi-affine sphere. Next, we will get a complete classification of centro-affine Lorentzian surfaces which are lightlike pseudo-isotropic but not pseudo-isotropic.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Lightlike pseudo-isotropic Lorentzian Calabi surfaces and ruled surfaces
    Cao, Lin
    Wu, Yadong
    JOURNAL OF GEOMETRY, 2022, 113 (03)
  • [2] Lightlike pseudo-isotropic Lorentzian Calabi surfaces and ruled surfaces
    Lin Cao
    Yadong Wu
    Journal of Geometry, 2022, 113
  • [3] Pseudo-isotropic Lorentzian Centroaffine Hypersurfaces 1
    Birembaux, Olivier
    Cao, Lin
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [4] Pseudo-Isotropic Lorentzian Centroaffine Hypersurfaces 2
    Birembaux, Olivier
    Cao, Lin
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [5] Pseudo-Isotropic Lorentzian Centroaffine Hypersurfaces 2
    Olivier Birembaux
    Lin Cao
    Results in Mathematics, 2022, 77
  • [6] Pseudo-isotropic Lorentzian Centroaffine Hypersurfaces 1
    Olivier Birembaux
    Lin Cao
    Results in Mathematics, 2022, 77
  • [7] LORENTZIAN AND COMPLETELY PSEUDO-ISOTROPIC SUBMANIFOLDS OF A PSEUDO-RIEMANNIAN SPACE
    VERSTRAELEN, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (22): : 971 - 973
  • [8] NULL PSEUDO-ISOTROPIC LAGRANGIAN SURFACES
    Carriazo, Alfonso
    Martin-Molina, Veronica
    Vrancken, Luc
    COLLOQUIUM MATHEMATICUM, 2017, 150 (01) : 87 - 101
  • [9] Hyperbolic surfaces in centro-affine geometry - Integrability and discretization
    Schief, WK
    CHAOS SOLITONS & FRACTALS, 2000, 11 (1-3) : 97 - 106
  • [10] Lightlike pseudo-isotropic centroaffine Lorentzian hypersurfaces of dimension 3
    Birembaux, Olivier
    Cao, Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (02)