Pseudo-Isotropic Centro-Affine Lorentzian Surfaces

被引:5
|
作者
Birembaux, Olivier [1 ]
机构
[1] Univ Polytech Hauts de France, LMI Lab Math Ingn, Campus Mont Houy, F-59313 Valenciennes 9, France
关键词
centro-affine submanifold; isotropic submanifold; Lorentzian submanifold;
D O I
10.3390/math8081284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study centro-affine Lorentzian surfaces M-2 in R-3 which have pseudo-isotropic or lightlike pseudo-isotropic difference tensor. We first show that M-2 is pseudo-isotropic if and only if the Tchebychev form T=0. In that case, M-2 is a an equi-affine sphere. Next, we will get a complete classification of centro-affine Lorentzian surfaces which are lightlike pseudo-isotropic but not pseudo-isotropic.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] When an isotropic random vector is pseudo-isotropic
    Misiewicz, JK
    Tabisz, K
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 359 - 366
  • [32] Moving frames and differential invariants in centro-affine geometry
    Olver P.J.
    Lobachevskii Journal of Mathematics, 2010, 31 (2) : 77 - 89
  • [33] Centro-affine hypersurface immersions with parallel cubic form
    Hildebrand R.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2): : 593 - 640
  • [34] Pseudo-isotropic materials as reflectionless media
    Khorasani, S
    Rashidian, B
    APOC 2001: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS: OPTOELECTRONICS, MATERIALS, AND DEVICES FOR COMMUNICATIONS, 2001, 4580 : 399 - 406
  • [35] Research works of Romanian mathematicians on centro-affine geometry
    Cruceanu, Vasile
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2005, 10 (01): : 1 - 5
  • [36] Infinitely Many Solutions for Centro-affine Minkowski Problem
    Li, Qi-Rui
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5577 - 5596
  • [37] Group invariant solutions to a centro-affine invariant flow
    Weifeng Wo
    Shuxin Yang
    Xiaoliu Wang
    Archiv der Mathematik, 2017, 108 : 495 - 505
  • [38] Mirror symmetric solutions to the centro-affine Minkowski problem
    Jian, Huaiyu
    Lu, Jian
    Zhu, Guangxian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (02)
  • [39] DECOMPOSITION OF CENTRO-AFFINE COVARIANTS OF POLYNOMIAL DIFFERENTIAL SYSTEMS
    Da Li, Dahira
    Cheng, Sui Sun
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (05): : 1903 - 1924
  • [40] Feature Matching and Heat Flow in Centro-Affine Geometry
    Olver, Peter J.
    Qu, Changzheng
    Yang, Yun
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16