Pseudo-Isotropic Centro-Affine Lorentzian Surfaces

被引:5
|
作者
Birembaux, Olivier [1 ]
机构
[1] Univ Polytech Hauts de France, LMI Lab Math Ingn, Campus Mont Houy, F-59313 Valenciennes 9, France
关键词
centro-affine submanifold; isotropic submanifold; Lorentzian submanifold;
D O I
10.3390/math8081284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study centro-affine Lorentzian surfaces M-2 in R-3 which have pseudo-isotropic or lightlike pseudo-isotropic difference tensor. We first show that M-2 is pseudo-isotropic if and only if the Tchebychev form T=0. In that case, M-2 is a an equi-affine sphere. Next, we will get a complete classification of centro-affine Lorentzian surfaces which are lightlike pseudo-isotropic but not pseudo-isotropic.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Rigidity of pseudo-isotropic immersions
    Cabrerizo, J. L.
    Fernandez, M.
    Gomez, J. S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (07) : 834 - 842
  • [22] Centro-Affine Invariants for Smooth Convex Bodies
    Stancu, Alina
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (10) : 2289 - 2320
  • [23] Invariant hypersurface flows in centro-affine geometry
    Yun Yang
    Changzheng Qu
    Science China Mathematics, 2021, 64 : 1715 - 1734
  • [24] Invariant hypersurface flows in centro-affine geometry
    Yang, Yun
    Qu, Changzheng
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (08) : 1715 - 1734
  • [25] An eternal curve flow in centro-affine geometry
    Jiang, Xinjie
    Yang, Yun
    Yu, Yanhua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (10)
  • [26] Volume preserving centro-affine normal flows
    Ivaki, Mohammad N.
    Stancu, Alina
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (03) : 671 - 685
  • [27] Mirror symmetric solutions to the centro-affine Minkowski problem
    Huaiyu Jian
    Jian Lu
    Guangxian Zhu
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [28] Group invariant solutions to a centro-affine invariant flow
    Wo, Weifeng
    Yang, Shuxin
    Wang, Xiaoliu
    ARCHIV DER MATHEMATIK, 2017, 108 (05) : 495 - 505
  • [29] Variational problems for plane curves in centro-affine geometry
    Musso, Emilio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (30)
  • [30] The fundamental theorems of curves and hypersurfaces in centro-affine geometry
    Gardner, RB
    Wilkens, GR
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1997, 4 (03) : 379 - 401