NULL PSEUDO-ISOTROPIC LAGRANGIAN SURFACES

被引:2
|
作者
Carriazo, Alfonso [1 ]
Martin-Molina, Veronica [4 ]
Vrancken, Luc [2 ,3 ]
机构
[1] Univ Seville, Dept Geometria & Topol, Fac Matemat, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Valenciennes, LAMAV, F-59313 Valenciennes 9, France
[3] Katholieke Univ Leuven, Dept Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
[4] Univ Seville, Dept Didact Matemat, Fac Ciencias Educ, C Pirotecnia S-N, Seville 41013, Spain
关键词
Lagrangian submanifold; complex projective space; isotropic sub-manifold; Lorentzian submanifold; SUBMANIFOLDS; IMMERSIONS;
D O I
10.4064/cm7107s-12-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Lagrangian, Lorentzian surface M? in a complex space form (M) over tilde (2)(1) (4c) is pseudo-isotropic if and only if M is minimal. Next we obtain a complete classification of all Lagrangian, Lorentzian surfaces which are lightlike pseudo-isotropic but not pseudo-isotropic.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 50 条
  • [1] CONSTANT CURVATURE SURFACES IN A PSEUDO-ISOTROPIC SPACE
    Aydin, Muhittin Evren
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (03): : 221 - 233
  • [2] Lightlike pseudo-isotropic Lorentzian Calabi surfaces and ruled surfaces
    Cao, Lin
    Wu, Yadong
    JOURNAL OF GEOMETRY, 2022, 113 (03)
  • [3] Lightlike pseudo-isotropic Lorentzian Calabi surfaces and ruled surfaces
    Lin Cao
    Yadong Wu
    Journal of Geometry, 2022, 113
  • [4] Pseudo-Isotropic Centro-Affine Lorentzian Surfaces
    Birembaux, Olivier
    MATHEMATICS, 2020, 8 (08)
  • [5] Rigidity of pseudo-isotropic immersions
    Cabrerizo, J. L.
    Fernandez, M.
    Gomez, J. S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (07) : 834 - 842
  • [6] When an isotropic random vector is pseudo-isotropic
    Misiewicz, JK
    Tabisz, K
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 359 - 366
  • [7] Pseudo-isotropic materials as reflectionless media
    Khorasani, S
    Rashidian, B
    APOC 2001: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS: OPTOELECTRONICS, MATERIALS, AND DEVICES FOR COMMUNICATIONS, 2001, 4580 : 399 - 406
  • [8] PSEUDO-ISOTROPIC HYPERSURFACES IN A MINKOWSKI SPACE
    ROSCA, R
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1970, 56 (04): : 346 - &
  • [9] Pseudo-isotropic Calabi hypersurfaces of dimension 3
    Cao, Lin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 88
  • [10] On convolutions and linear combinations of pseudo-isotropic distributions
    Ger, R
    Keane, M
    Misiewicz, JK
    JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (04) : 977 - 995