Mutation pairs and quotient categories of Abelian categories

被引:2
|
作者
Zhou, Panyue [1 ]
Xu, Jinde [2 ]
Ouyang, Baiyu [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
关键词
Abelian category; cotorsion pair; -mutation pair; quotient category; triangulated category; 18E10; 18E30; 18E40; TRIANGULATED CATEGORIES;
D O I
10.1080/00927872.2016.1175581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of ?-mutation pairs of subcategories in an abelian category is defined in this article. When (?,?) is a ?-mutation pair in an abelian category ?, the quotient category ?/? carries naturally a triangulated structure. Moreover, our result generalize the construction of the quotient triangulated category by Happel [10, Theorem 2.6]. Finally, we find a one-to-one correspondence between cotorsion pairs in ? and cotorsion pairs in the quotient category ?/?, and study homological finiteness of subcategories in a mutation pair.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [41] Abelian and Additive Categories
    Penner, Robert
    TOPOLOGY AND K-THEORY: LECTURES BY DANIEL QUILLEN, 2020, 2262 : 51 - 55
  • [42] Abelian categories arising from cluster tilting subcategories II: quotient functors
    Liu, Yu
    Zhou, Panyue
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 2721 - 2756
  • [43] Subprojectivity in Abelian Categories
    Houda Amzil
    Driss Bennis
    J. R. García Rozas
    Hanane Ouberka
    Luis Oyonarte
    Applied Categorical Structures, 2021, 29 : 889 - 913
  • [44] Compactness in abelian categories
    Kalnai, Peter
    Zemlicka, Jan
    JOURNAL OF ALGEBRA, 2019, 534 : 273 - 288
  • [45] QUOTIENT PRE-CATEGORIES
    DEKOV, DV
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1979, 32 (12): : 1619 - 1622
  • [46] Quasi-abelian hearts of twin cotorsion pairs on triangulated categories
    Shah, Amit
    JOURNAL OF ALGEBRA, 2019, 534 : 313 - 338
  • [47] From recollement of triangulated categories to recollement of abelian categories
    LIN YaNan 1 & WANG MinXiong 1
    2 School of Mathematical Sciences
    Science China(Mathematics), 2010, 53 (04) : 1111 - 1116
  • [48] Abelian envelopes of exact categories and highest weight categories
    Bodzenta, Agnieszka
    Bondal, Alexey
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (01)
  • [49] Recollements of abelian categories and special types of comma categories
    Chen, Qing-hua
    Zheng, Min
    JOURNAL OF ALGEBRA, 2009, 321 (09) : 2474 - 2485
  • [50] From recollement of triangulated categories to recollement of abelian categories
    YaNan Lin
    MinXiong Wang
    Science China Mathematics, 2010, 53 : 1111 - 1116