Mutation pairs and quotient categories of Abelian categories

被引:2
|
作者
Zhou, Panyue [1 ]
Xu, Jinde [2 ]
Ouyang, Baiyu [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
关键词
Abelian category; cotorsion pair; -mutation pair; quotient category; triangulated category; 18E10; 18E30; 18E40; TRIANGULATED CATEGORIES;
D O I
10.1080/00927872.2016.1175581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of ?-mutation pairs of subcategories in an abelian category is defined in this article. When (?,?) is a ?-mutation pair in an abelian category ?, the quotient category ?/? carries naturally a triangulated structure. Moreover, our result generalize the construction of the quotient triangulated category by Happel [10, Theorem 2.6]. Finally, we find a one-to-one correspondence between cotorsion pairs in ? and cotorsion pairs in the quotient category ?/?, and study homological finiteness of subcategories in a mutation pair.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [31] QUOTIENT CATEGORIES OF MODULES
    WALKER, C
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (08): : 948 - &
  • [32] THE RESOLUTION DIMENSIONS WITH RESPECT TO BALANCED PAIRS IN THE RECOLLEMENT OF ABELIAN CATEGORIES
    Fu, Xuerong
    Hu, Yonggang
    Yao, Hailou
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 1031 - 1048
  • [33] Balanced Pairs and Relative Tilting Objects in Recollements of Abelian Categories
    Zhang, Peiyu
    Liu, Menghui
    Liu, Dajun
    Wei, Jiaqun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025,
  • [34] Mutation of n-cotorsion pairs in triangulated categories
    Chang, Huimin
    Zhou, Panyue
    JOURNAL OF ALGEBRA, 2025, 667 : 653 - 671
  • [35] RIGHT ABELIAN CATEGORIES
    HUQ, SA
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 50 (03): : 284 - &
  • [36] SLENDERNESS IN ABELIAN CATEGORIES
    DIMITRIC, R
    LECTURE NOTES IN MATHEMATICS, 1983, 1006 : 375 - 383
  • [37] Expansions of abelian categories
    Chen, Xiao-Wu
    Krause, Henning
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (12) : 2873 - 2883
  • [38] REFLECTIONS IN ABELIAN CATEGORIES
    FUCHS, L
    MESSA, K
    COMMUNICATIONS IN ALGEBRA, 1980, 8 (01) : 53 - 77
  • [39] Subprojectivity in Abelian Categories
    Amzil, Houda
    Bennis, Driss
    Rozas, J. R. Garcia
    Ouberka, Hanane
    Oyonarte, Luis
    APPLIED CATEGORICAL STRUCTURES, 2021, 29 (05) : 889 - 913
  • [40] LOCALIZATION IN ABELIAN CATEGORIES
    KATO, T
    IKEYAMA, T
    COMMUNICATIONS IN ALGEBRA, 1990, 18 (08) : 2519 - 2540