Mutation pairs and quotient categories of Abelian categories

被引:2
|
作者
Zhou, Panyue [1 ]
Xu, Jinde [2 ]
Ouyang, Baiyu [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
关键词
Abelian category; cotorsion pair; -mutation pair; quotient category; triangulated category; 18E10; 18E30; 18E40; TRIANGULATED CATEGORIES;
D O I
10.1080/00927872.2016.1175581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of ?-mutation pairs of subcategories in an abelian category is defined in this article. When (?,?) is a ?-mutation pair in an abelian category ?, the quotient category ?/? carries naturally a triangulated structure. Moreover, our result generalize the construction of the quotient triangulated category by Happel [10, Theorem 2.6]. Finally, we find a one-to-one correspondence between cotorsion pairs in ? and cotorsion pairs in the quotient category ?/?, and study homological finiteness of subcategories in a mutation pair.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [21] Abelian Hearts of Twin Cotorsion Pairs on Extriangulated Categories
    Huang, Qiong
    Zhou, Panyue
    ALGEBRA COLLOQUIUM, 2023, 30 (03) : 449 - 466
  • [22] Representation of n-abelian categories in abelian categories
    Ebrahimi, Ramin
    Nasr-Isfahani, Alireza
    JOURNAL OF ALGEBRA, 2020, 563 : 352 - 375
  • [23] ABELIAN CATEGORIES VERSUS ABELIAN 2-CATEGORIES
    Pirashvili, Teimuraz
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (02) : 353 - 368
  • [24] Ribbon Abelian categories as modular categories
    Lyubashenko, V
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1996, 5 (03) : 311 - 403
  • [25] Derived categories of Abelian categories - Preface
    Illusie, L
    ASTERISQUE, 1996, (239) : I - II
  • [26] Quotient triangulated categories
    Chen, Xiao-Wu
    Zhang, Pu
    MANUSCRIPTA MATHEMATICA, 2007, 123 (02) : 167 - 183
  • [27] QUOTIENT CATEGORIES AND PHASES
    Tull, Sean
    THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 573 - 603
  • [28] A construction of quotient A∞-categories
    Lyubashenko, Volodymyr
    Ovsienko, Sergiy
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2006, 8 (02) : 157 - 203
  • [29] Quotient triangulated categories
    Xiao-Wu Chen
    Pu Zhang
    manuscripta mathematica, 2007, 123 : 167 - 183
  • [30] TRIANGULATED QUOTIENT CATEGORIES
    Liu, Yu
    Zhu, Bin
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3720 - 3738