Mutation pairs and quotient categories of Abelian categories

被引:2
|
作者
Zhou, Panyue [1 ]
Xu, Jinde [2 ]
Ouyang, Baiyu [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
关键词
Abelian category; cotorsion pair; -mutation pair; quotient category; triangulated category; 18E10; 18E30; 18E40; TRIANGULATED CATEGORIES;
D O I
10.1080/00927872.2016.1175581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of ?-mutation pairs of subcategories in an abelian category is defined in this article. When (?,?) is a ?-mutation pair in an abelian category ?, the quotient category ?/? carries naturally a triangulated structure. Moreover, our result generalize the construction of the quotient triangulated category by Happel [10, Theorem 2.6]. Finally, we find a one-to-one correspondence between cotorsion pairs in ? and cotorsion pairs in the quotient category ?/?, and study homological finiteness of subcategories in a mutation pair.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [1] MUTATION PAIRS IN ABELIAN CATEGORIES
    Xu, Jinde
    Zhou, Panyue
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 2732 - 2746
  • [2] QUOTIENT CATEGORIES OF n-ABELIAN CATEGORIES
    Zheng, Qilian
    Wei, Jiaqun
    GLASGOW MATHEMATICAL JOURNAL, 2020, 62 (03) : 673 - 705
  • [3] A note on abelian quotient categories
    Zhou, Panyue
    JOURNAL OF ALGEBRA, 2020, 551 : 1 - 8
  • [4] n-angulated quotient categories induced by mutation pairs
    Zengqiang Lin
    Czechoslovak Mathematical Journal, 2015, 65 : 953 - 968
  • [5] n-angulated quotient categories induced by mutation pairs
    Lin, Zengqiang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 953 - 968
  • [6] n-Abelian quotient categories
    Zhou, Panyue
    Zhu, Bin
    JOURNAL OF ALGEBRA, 2019, 527 : 264 - 279
  • [7] Yoneda extensions of abelian quotient categories
    Ebrahimi, Ramin
    JOURNAL OF ALGEBRA, 2023, 616 : 212 - 226
  • [8] ADJOINT PAIRS OF FUNCTORS ON ABELIAN CATEGORIES
    HARASE, T
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1966, 13 : 174 - &
  • [9] ISOMORPHISM INVARIANTS FOR QUOTIENT CATEGORIES OF ABELIAN GROUPS
    BERTHOLF, DE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 260 - &
  • [10] Constructions of Frobenius Pairs in Abelian Categories
    Li Liang
    Gang Yang
    Mediterranean Journal of Mathematics, 2022, 19