The number of conjugacy classes of non-normal cyclic subgroups in nilpotent groups of odd order

被引:4
|
作者
Li, SR [1 ]
机构
[1] Guangxi Univ, Dept Math, Nanning 530004, Peoples R China
关键词
D O I
10.1515/jgth.1998.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nilpotent group of odd order, let c(G) denote the nilpotency class of G and let v*(G) denote the number of conjugacy classes of non-normal cyclic subgroups of G. Then c(G) less than or equal to v*(G) + 1, with equality if and only if either G is abelian or G = [a, b \ a(Pn) = b(P) = 1, a(b) = a(1+pn-1)] where p is an odd prime and n greater than or equal to 2. Examples show that this inequality need not hold for groups of even order.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 50 条
  • [31] ABELIAN AND NILPOTENT SUBGROUPS OF MAXIMAL ORDER OF GROUPS OF ODD ORDER
    ARAD, Z
    PACIFIC JOURNAL OF MATHEMATICS, 1976, 62 (01) : 29 - 41
  • [32] FINITE GROUPS WHOSE NON-NORMAL SUBGROUPS ARE OF PRIME ORDER
    Shi, Huaguo
    Han, Zhangjia
    Jiang, Lei
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 309 - 316
  • [33] GROUPS WITH RESTRICTED NON-NORMAL SUBGROUPS
    BRUNO, B
    PHILLIPS, RE
    MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (02) : 199 - 221
  • [34] Groups with polycyclic non-normal subgroups
    Franciosi, S
    de Giovanni, F
    Newell, ML
    ALGEBRA COLLOQUIUM, 2000, 7 (01) : 33 - 42
  • [35] A note on the conjugacy classes of non-cyclic subgroups
    Meng, Wei
    Yao, Hailou
    Ma, Li
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1252 - 1258
  • [36] Groups with Supersoluble Non-normal Subgroups
    De Falco, Maria
    Martusciello, Maria
    Musella, Carmelo
    ALGEBRA COLLOQUIUM, 2016, 23 (02) : 213 - 218
  • [37] Some explicit bounds in groups with a finite number of non-normal subgroups
    LaHaye, R
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (12) : 3803 - 3821
  • [38] Lower Bounds on the Number of Cyclic Subgroups in Finite Non-Cyclic Nilpotent Groups
    Meng, Wei
    Lu, Jiakuan
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (01) : 93 - 102
  • [39] FINITE 2-GROUPS WITH ODD NUMBER OF CONJUGACY CLASSES
    Jaikin-Zapirain, Andrei
    Tent, Joan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (05) : 3663 - 3688
  • [40] Twisted conjugacy classes in nilpotent groups
    Roman'kov, V.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (04) : 664 - 671