The number of conjugacy classes of non-normal cyclic subgroups in nilpotent groups of odd order

被引:4
|
作者
Li, SR [1 ]
机构
[1] Guangxi Univ, Dept Math, Nanning 530004, Peoples R China
关键词
D O I
10.1515/jgth.1998.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nilpotent group of odd order, let c(G) denote the nilpotency class of G and let v*(G) denote the number of conjugacy classes of non-normal cyclic subgroups of G. Then c(G) less than or equal to v*(G) + 1, with equality if and only if either G is abelian or G = [a, b \ a(Pn) = b(P) = 1, a(b) = a(1+pn-1)] where p is an odd prime and n greater than or equal to 2. Examples show that this inequality need not hold for groups of even order.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 50 条