Twisted conjugacy classes in nilpotent groups

被引:37
|
作者
Roman'kov, V. [1 ]
机构
[1] Omsk State Dostoevskii Univ, Omsk 644077, Russia
关键词
D O I
10.1016/j.jpaa.2010.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let N be a finitely generated nilpotent group We show that there is an algorithm that for any automorphism phi is an element of Aut(N) computes its Reidemeister number R(phi) It is proved that any free nilpotent group N(rc) of rank r and class c belongs to class R(infinity) if any of the following conditions holds r = 2 and c >= 4 r = 3 and c >= 12 r >= 4 and c >= 2r (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:664 / 671
页数:8
相关论文
共 50 条
  • [1] Twisted conjugacy classes in nilpotent groups
    Goncalves, Daciberg
    Wong, Peter
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 11 - 27
  • [2] ON NILPOTENT GROUPS AND CONJUGACY CLASSES
    Adan-Bante, Edith
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 345 - 356
  • [3] Twisted conjugacy classes in twisted Chevalley groups
    Bhunia, Sushil
    Dey, Pinka
    Roy, Amit
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (03)
  • [4] Effective twisted conjugacy separability of nilpotent groups
    Jonas Deré
    Mark Pengitore
    Mathematische Zeitschrift, 2019, 292 : 763 - 790
  • [5] Effective twisted conjugacy separability of nilpotent groups
    Dere, Jonas
    Pengitore, Mark
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) : 763 - 790
  • [6] Twisted Conjugacy Classes in Chevalley Groups
    T. R. Nasybullov
    Algebra and Logic, 2015, 53 : 481 - 501
  • [7] TWISTED CONJUGACY CLASSES IN CHEVALLEY GROUPS
    Nasybullov, T. R.
    ALGEBRA AND LOGIC, 2015, 53 (06) : 481 - 501
  • [8] TWISTED CONJUGACY CLASSES FOR POLYFREE GROUPS
    Fel'shtyn, Alexander
    Goncalves, Daciberg
    Wong, Peter
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (01) : 130 - 138
  • [9] Twisted conjugacy classes in unitriangular groups
    Nasybullov, Timur
    JOURNAL OF GROUP THEORY, 2019, 22 (02) : 253 - 266
  • [10] On the number of conjugacy classes of finite nilpotent groups
    Jaikin-Zapirain, Andrei
    ADVANCES IN MATHEMATICS, 2011, 227 (03) : 1129 - 1143