Let N be a finitely generated nilpotent group We show that there is an algorithm that for any automorphism phi is an element of Aut(N) computes its Reidemeister number R(phi) It is proved that any free nilpotent group N(rc) of rank r and class c belongs to class R(infinity) if any of the following conditions holds r = 2 and c >= 4 r = 3 and c >= 12 r >= 4 and c >= 2r (C) 2010 Elsevier B V All rights reserved
机构:
Univ Sao Paulo, Dept Matemat, IME USP, Agencia Cidade Sao Paulo, BR-05314970 Sao Paulo, BrazilUniv Sao Paulo, Dept Matemat, IME USP, Agencia Cidade Sao Paulo, BR-05314970 Sao Paulo, Brazil
Goncalves, Daciberg
Kochloukova, Dessislava Hristova
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Matemat, BR-13083970 Campinas, SP, BrazilUniv Sao Paulo, Dept Matemat, IME USP, Agencia Cidade Sao Paulo, BR-05314970 Sao Paulo, Brazil